Skip to main content

Abstract

Perhaps the most important function of a neuron is the integration of input stimuli as expressed in the modulation of its neurotransmitter release. The measurement of neurotransmitter release from specific neurons has been the most difficult aspect of identifying a given chemical as ‘neurotransmitter’ of that neuron. It is here that retinal horizontal cells have several advantages that make them attractive for use in studying neurotransmitter release. Horizontal cells are neurons in the central nervous system (CNS), diencephalon to be exact, that are located within the neural retina. They are easily identified interneurons that are part of a well-characterized neural circuit; they respond with graded potentials and can be studied in situ or in isolation (Dowling, 1987) (Chapter 7). Studies on horizontal cells from the retinas of non-mammalian vertebrates have greatly increased our understanding of the mechanisms controlling the release of amino acid neurotransmitters, not only in the retina but throughout the vertebrate CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam-Vizi, V. (1992) External Ca2+-independent release of neurotransmitters. Journal of Neurochemistry ,58, 395–405.

    Article  PubMed  CAS  Google Scholar 

  • Agardh, E., Ehinger, B. and Wu, J.-Y. (1987) GABA and GAD-like immunoreactivity in the primate retina. Histochemistry ,86, 485–90.

    Article  PubMed  CAS  Google Scholar 

  • Agardh, E. and Ehinger, B. (1982) 3H-Muscimol, 3H-nipecotic acid and 3H-isoguavacine as auto radiographic markers for GABA neuro transmission. Journal of Neurotransmission ,54, 1–18.

    CAS  Google Scholar 

  • Alnaes, E. and Rahamimoff, R. (1975) On the role of mitochondria in transmitter release from motor nerve endings. Journal of Physiology (London) ,248, 285–306.

    CAS  Google Scholar 

  • Anderton, P.J. and Millar, T.J. (1989) MK801-induced antagonism of NMDA-preferring excitatory amino acid receptors in horizontal cells of the turtle retina. Neuroscience Letters ,101, 331–36.

    Article  PubMed  CAS  Google Scholar 

  • Aperia, A., Bertorello, A. and Seri, I. (1987) Dopamine causes inhibition of Na+-K+ -ATPase activity in rat proximal convoluted tubule segments. American Journal of Physiology ,252, F39-F45.

    PubMed  CAS  Google Scholar 

  • Ariel, M., Lasater, E.M., Mangel, S.C. and Dowling, J.E. (1984) On the sensitivity of H1 horizontal cells of the carp retina to glutamate, aspartate and their agonists. Brain Research ,295, 179–83.

    Article  PubMed  CAS  Google Scholar 

  • Ariel, M., Mangel, S.C. and Dowling, J.E. (1986) N-methyl D-aspartate acts as an antagonist of the photoreceptor transmitter in the carp retina. Brain Research ,372, 143–8.

    Article  PubMed  CAS  Google Scholar 

  • Attwell, D., Barbour, B. and Szatkowski, M. (1993) Nonvesicular release of neurotransmitter. Neuron ,11, 401–7.

    Article  PubMed  CAS  Google Scholar 

  • Ayoub, G.S. and Lam, D.M. (1985) The content and release of endogenous GABA in isolated horizontal cells of the goldfish retina. Vision Research ,25, 1187–93.

    Article  PubMed  CAS  Google Scholar 

  • Ayoub, G.S. and Lam, D.M.K. (1984). The release of γ-aminobutyric acid from horizontal cells of the goldfish (Carassius auratus) retina. Journal of Physiology (London) ,355, 191–214.

    CAS  Google Scholar 

  • Barnes, S. and Hille, B. (1989) Ionic channels of the inner segment of tiger salamander cone photoreceptors. Journal of General Physiology ,94, 719-43.

    Article  PubMed  CAS  Google Scholar 

  • Baylor, D.A., Fuortes, M.G.F. and O’Bryan, P.M. (1971) Receptive field of cones in the retina of the turtle. Journal of Physiology (London) ,214, 265–94.

    CAS  Google Scholar 

  • Bernath, S. (1992) Calcium-independent release of amino acid neurotransmitters: fact or artifact. Progress in Neurobiology ,38, 57–91.

    Article  PubMed  CAS  Google Scholar 

  • Bernath, S. and Zigmond, M.J. (1988) Characterization of [3H]GABA release from striatal slices: evidence for a calcium-independent process via the GABA uptake system. Neuroscience ,27, 563–70.

    Article  PubMed  CAS  Google Scholar 

  • Bernath, S., Keller Jr., R.W. and Zigmond, M.J. (1989) Release of endogenous GABA can occur through Ca2+-dependent and Ca2+-independent processes. Neurochemistry International ,14, 439–45.

    Article  PubMed  CAS  Google Scholar 

  • Bertorello, A.M., Hopfield, J.F., Aperia, A. and Greengard, P. (1990) Inhibition by dopamine of (Na+ +K+)ATPase activity in neostriatal neurons through D1 and D2 dopamine receptor synergism. Nature ,347, 386–8.

    Article  PubMed  CAS  Google Scholar 

  • Blazynski, C. (1990) Discrete distributions of adenosine receptors in mammalian retina. Journal of Neurochemistry ,54, 648–55.

    Article  PubMed  CAS  Google Scholar 

  • Blazynski, C. and Perez, M.-T.R. (1992) Neuroregulatory functions of adenosine in the retina. Progress in Retinal Research ,11, 293–332.

    Article  Google Scholar 

  • Blazynski, C., Cohen, A.I., Fruh, B. and Niemeyer, G. (1989a) Adenosine: autoradiographic localization and electrophysiologic effects in the cat retina. Investigative Ophthalmology and Visual Science ,30, 2533–6.

    PubMed  CAS  Google Scholar 

  • Blazynski, C., Mosinger, J.L. and Cohen, A.I. (1989b) Comparison of adenosine uptake and endogenous adenosine-containing cells in mammalian retina. Visual Neuroscience, 2 ,109–16.

    Article  PubMed  CAS  Google Scholar 

  • Braas, K.M., Zarbin, M.A. and Snyder, S.H. (1987) Endogenous adenosine and adenosine receptors localized to ganglion cells of the retina. Proceedings of the National Academy of Sciences of the United States of America ,84, 3906–10.

    Article  PubMed  CAS  Google Scholar 

  • Brandon, C. (1985) Retinal GABA neurons: localization in vertebrate species using an antiserum to rabbit brain glutamate decarboxylase. Brain Research ,344, 286–95.

    Article  PubMed  CAS  Google Scholar 

  • Brandon, C, Lam, D.M.K., Su, Y.Y.T. and Wu, J.Y. (1980) Immunocytochemical localization of GABA neurons in the rabbit and frog retina. Brain Research Bulletin ,5 (Suppl.2), 21–9.

    Article  CAS  Google Scholar 

  • Burkhardt, D.A. (1977) Responses and receptivefield organization of cones in perch retinas. Journal of Neurophysiology ,40, 53–62.

    PubMed  CAS  Google Scholar 

  • Burkhardt, D.A. (1993) Synaptic feedback, depolarization, and color opponency in cone photoreceptors. Visual Neuroscience ,10, 981–9.

    Article  PubMed  CAS  Google Scholar 

  • Campochiaro, P., Ferkany, J.W. and Coyle, J.T. (1984) The dissociation of evoked release of [3H]-GABA and endogenous GABA from chick retina in vitro. Experimental Eye Research ,39, 299–305.

    Article  PubMed  CAS  Google Scholar 

  • Campochiaro, P., Ferkany, J.W. and Coyle, J.T. (1985) Excitatory amino acid analogs evoke release of endogenous amino acids and acetyl choline from chick retina in vitro. Vision Research ,25, 1375–86.

    Article  PubMed  CAS  Google Scholar 

  • Carafoli, E., Tiozzo, R., Crovetti, F. and Kratzing, C. (1974) The release of calcium from heart mitochondria by sodium. Journal of Molecular and Cellular Cardiology ,6, 361–71.

    Article  PubMed  CAS  Google Scholar 

  • Cervetto, L. and MacNicol, E.F., Jr (1972) Inactivation of horizontal cells in turtle retina by glutamate and aspartate. Science ,178, 767–8.

    Article  PubMed  CAS  Google Scholar 

  • Cha, J., O’Brien, D.R. and Dowling, J.E. (1986) Effects of D-aspartate on excitatory amino acidinduced release of 3H-GABA from goldfish retina. Brain Research ,376, 140–8.

    Article  PubMed  CAS  Google Scholar 

  • Chen, F. and Witkovsky, P. (1978) The formation of photoreceptor synapses in the retina of larval Xenopus. Journal of Neurocytology, 7 ,721–40.

    Article  PubMed  CAS  Google Scholar 

  • Clark, J.A. and Amara, S.G. (1993) Amino acid neurotransmitter transporters: structure, function, and molecular diversity. BioEssays ,15, 323–32.

    Article  PubMed  CAS  Google Scholar 

  • Cunningham, J. and Neal, M.J. (1981) On the mechanism by which veratridine causes a calcium-independent release of gammaaminobutyric acid from brain slices. British Journal of Pharmacology ,73, 655–67.

    Article  PubMed  CAS  Google Scholar 

  • Cunningham, J.R. and Neal, M.J. (1985) Effect of excitatory amino acids on gamma-aminobutyric acid release from frog horizontal cells. Journal of Physiology (London) ,362, 51–67.

    CAS  Google Scholar 

  • Cunningham, J.R., Neal, M.J., Stone, S. and Witkovsky, P. (1988) GABA release from Xenopus retina does not correlate with horizontal cell membrane potential. Neuroscience ,24, 39–48.

    Article  PubMed  CAS  Google Scholar 

  • de Mello, M.C.F., Klein, W.L. and de Mello, F.G. (1988) L-glutamate evoked release of GABA from cultured avian retina cells does not require glutamate receptor activation. Brain Research ,443, 166–72.

    Article  PubMed  Google Scholar 

  • de Mello, M.C.F., Guerra-Peixe, R. and de Mello, F.G. (1993) Excitatory amino acid receptors mediate the glutamate-induced release of GABA synthesized from putrescine in cultured cells of embryonic avian retina. Neurochemistry International ,22, 249–53.

    Article  PubMed  Google Scholar 

  • Djamgoz, M.B.A. and Ruddock, K.H. (1979) Effects of picrotoxin and strychnine on fish retinal S-potentials: evidence for inhibitory control of depolarizing responses. Neuroscience Letters ,12, 329–34.

    Article  PubMed  CAS  Google Scholar 

  • do Nascimento, J.L.M. and de Mello, F.G. (1985) Induced release of gamma-aminobutyric acid by a carrier-mediated, high-affinity uptake of L-glutamate in cultured chick retina cells. Journal ofNeurochemistry ,45, 1820–7.

    Article  Google Scholar 

  • Dowling, J.E. (1968) Synaptic organization of the frog retina: an electron microscopic analysis comparing the retinas of frogs and primates. Proceedings of the Royal Society of London ,170, 205–28.

    Article  PubMed  CAS  Google Scholar 

  • Dowling, J.E. (1987) The Retina: An Approachable Part of the Brain. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Dowling, J.E. and Ehinger, B. (1978) The interplexiform cell system-I. Synapses of the dopaminergic neurons of the goldfish retina. Proceedings of the Royal Society of London ,201, 7–26.

    Article  PubMed  CAS  Google Scholar 

  • Dowling, J.E. and Werblin, F.S. (1969) Organization of retina of the mudpuppy, Necturus maculosus.I. Synaptic structure. Journal of Neurophysiology ,32, 315–38.

    PubMed  CAS  Google Scholar 

  • Dowling, J.E., Brown, J.E. and Major, D. (1966) Synapses of horizontal cells in rabbit and cat retinas. Science ,153, 1639–41.

    Article  PubMed  CAS  Google Scholar 

  • Ehinger, B. and Perez, M.T.R. (1984) Autoradiography of nucleoside uptake into the retina. Neurochemistry International ,6, 369–81.

    Article  PubMed  CAS  Google Scholar 

  • Früh, B., Niemeyer, G. and Onoe, S. (1989) Adenosine enhances the ERG b-wave and depresses the light peak in perfused cat eyes. Investigative Ophthalmology and Visual Science ,(Suppl.) 30, 124.

    Google Scholar 

  • Gallego, A. (1986) Comparative studies on horizontal cells and a note on microglial cells. Progress in Retinal Research ,5, 165–206.

    Article  Google Scholar 

  • Gerschenfeld, H.M., Piccolino, M. and Neyton, J. (1980) Feedback modulation of cone synapses by L-horizontal cells of the turtle retina. Journal of Experimental Biology ,89, 177–92.

    PubMed  CAS  Google Scholar 

  • Grünert, U. and Wässle, H. (1990) GABA-like immunoreactivity in the macaque monkey retina: a light and electron microscopic study. Journal of Comparative Neurology ,297, 509–24.

    Article  PubMed  Google Scholar 

  • Hernandez, -R.J. (1992) Na+/K+ -ATPase regulation by neurotransmitters. Neurochemistry International , 20 1–10.

    Article  Google Scholar 

  • Hollyfield, J.G., Rayborn, M.F., Sarthy, P.V. and Lam, D.M.K. (1979) The emergence, localization and maturation of neurotransmitter systems during development of the retina in Xenopus laevis I. γ-aminobutyric acid. Journal of Comparative Neurology ,188, 587–98.

    Article  PubMed  CAS  Google Scholar 

  • Horiuchi, A., Takeyasu, K., Mouradian, M.M. et al. (1993) D1A dopamine receptor stimulation inhibits Na+/K+-ATPase activity through protein kinase A. Molecular Pharmacology ,43, 281-5.

    PubMed  CAS  Google Scholar 

  • Ishida, A.T. and Fain, G.L. (1981) D-aspartate potentiates the effects of L-glutamate on horizontal cells in goldfish retina. Proceedings of the National Academy of Sciences of the United States of America ,78, 5890–94.

    Article  PubMed  CAS  Google Scholar 

  • Ishida, A.T., Kaneko, A. and Tachibana, M. (1984) Responses of solitary retinal horizontal cells from Carassius auratus to L-glutamate and related amino acids. Journal of Physiology (London) ,348, 255–70.

    CAS  Google Scholar 

  • Jaffe, E.H., Hernandez, N. and Holder, L.G. (1984) Study on the mechanism of release of [3H]GABA from a teleost retina in vitro. Journal of Neurochemistry ,43, 1226–35.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko, A. and Tachibana, M. (1986) Effects of gamma-aminobutyric acid on isolated cone photoreceptors of the turtle retina. Journal of Physiology (London) ,373, 463–79.

    CAS  Google Scholar 

  • Kanner, B.I., Bendahan, A. and Radian, R. (1983) Efflux and exchange of gamma-aminobutyric acid and nipecotic acid catalyzed by synaptic plasma membrane vesicles isolated from immature rat brain. Biochimica et Biophysica Acta ,731, 54–62.

    Article  PubMed  CAS  Google Scholar 

  • Keyser, K.T., Karten, H.J., Katz, B. and Bohn, M.C. (1987) Catecholaminergic horizontal and amacrine cells in the ferret retina. Journal of Neuroscience ,7, 3996–4004.

    PubMed  CAS  Google Scholar 

  • Kleinschmidt, J. and Yazulla, S. (1984) Uptake of 3H-glycine in the outer plexiform layer of the retina of the toad, Bufo marinus. Journal of Comparative Neurology 230, 352–60.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, H. and Jones, J. (1984) Synaptic organization of the outer plexiform layer of the turtle retina: an electron microscope study of serial sections. Journal of Neurocytology ,13, 567–91.

    Article  PubMed  CAS  Google Scholar 

  • Laitinen, J.T. (1993) Dopamine stimulates K+efflux in the chick retina via D 1 receptors independently of adenyl cyclase activation. Journal of Neurochemistry ,61, 1461–9.

    Article  PubMed  CAS  Google Scholar 

  • Lam, D.M.K. (1972) The biosynthesis and content of gamma-aminobutyric acid in the goldfish retina. Journal of Cell Biology 54, 225–31.

    Article  PubMed  CAS  Google Scholar 

  • Lam, D.M. and Ayoub, G.S. (1983) Biochemical and biophysical studies of isolated horizontal cells from the teleost retina. Vision Research ,23, 433–44.

    Article  PubMed  CAS  Google Scholar 

  • Lam, D.M.K. and Steinman, L. (1971) The uptake of [ϒ–3H] aminobutyric acid in the goldfish retina. Proceedings of the National Academy of Sciences of the United States of America 68, 2777–81.

    Article  PubMed  CAS  Google Scholar 

  • Lam, D.M.K., Lasater, E.M. and Naka, K.-I. (1978) γ-Aminobutyric acid: a neurotransmitter candidate for cone horizontal cells of the catfish retina. Proceedings of the National Academy of Sciences of the United States of America ,75, 6310–13.

    Article  PubMed  CAS  Google Scholar 

  • Lam, D.M.K., Su, Y.Y.T., Swain, L. et al. (1979) Immunocytochemical localization of L-glutamic acid decarboxylase in the goldfish retina. Nature, 278 ,565–7.

    Article  PubMed  CAS  Google Scholar 

  • Lasansky, A. (1971) Synaptic organization of cone cells in the turtle retina. Philosophical Transactions of the Royal Society of London ,262, 365–81.

    Article  Google Scholar 

  • Lasansky, A. (1980) Lateral contacts and interactions of horizontal cell dendrites in the retina of the larval tiger salamander. Journal of Physiology (London) ,301, 59–68.

    CAS  Google Scholar 

  • Lasater, E.M. and Dowling, J.E. (1982) Carp horizontal cells in culture respond selectively to L-glutamate and its agonists. Proceedings of the National Academy of Sciences of the United States of America ,79, 936–40.

    Article  PubMed  CAS  Google Scholar 

  • Lasater, E.M. and Lam, D.M. (1984) The identification and some functions of GABAergic neurons in the distal catfish retina. Vision Research ,24, 497–506.

    Article  PubMed  CAS  Google Scholar 

  • Levi, G. and Raiteri, M. (1993) Carrier-mediated release of neurotransmitters. Trends in Neuroscience ,16, 415–19.

    Article  CAS  Google Scholar 

  • Lindberg, K.A. and Fisher, S.K. (1988) Ultrastructural evidence that horizontal cell axon terminals are presynaptic in the human retina. Journal of Comparative Neurology ,268, 281–97.

    Article  Google Scholar 

  • Lopez-Colomé, A.M., Salceda, R. and Pasantes-Morales, H. (1978) Potassium-stimulated release of GABA, glycine, and taurine from the chick retina. Neurochemical Research ,3431–41.

    Article  PubMed  Google Scholar 

  • Malchow, R.P. and Ripps, H. (1990) Effects of gamma-aminobutyric acid on skate retinal horizontal cells: evidence for an electrogenic uptake mechanism. Proceedings of the National Academy of Sciences of the United States of America ,87, 8945–9.

    Article  PubMed  CAS  Google Scholar 

  • Mangel, S.C., Ariel, M. and Dowling, J.E. (1989) D-Aspartate potentiates the effects of both l-aspartate and L-glutamate on carp horizontal cells. Neuroscience ,32, 19–26.

    Article  PubMed  CAS  Google Scholar 

  • Marc, R.E. and Lam, D.M.K. (1981) Uptake of aspartic and glutamic acid by photoreceptors in goldfish retina. Proceedings of the National Academy of Sciences of the United States of America ,78, 7185–9.

    Article  PubMed  CAS  Google Scholar 

  • Marc, R.E. and Liu, W.L.S. (1984) Horizontal cell synapses onto glycine-accumulating interplexi-form cells. Nature ,312, 266–8.

    Article  PubMed  CAS  Google Scholar 

  • Marc, R.E., Stell, W.K. Bok, D. and Lam, D.M.K. (1978) GABAergic pathways in the goldfish retina. Journal of Comparative Neurology ,182, 221–46.

    Article  PubMed  CAS  Google Scholar 

  • Marc, R.E., Liu, W.-L.S, Kalloniatis, M et al. (1990) Patterns of glutamate immunoreactivity in the goldfish retina. Journal of Neuroscience ,10, 4006–34.

    PubMed  CAS  Google Scholar 

  • Marmarelis, P.Z. and Naka, K.-I. (1973) Nonlinear analysis and synthesis of receptive-field responses in the catfish retina. III. Two-input white-noise analysis. Journal of Neurophysiology ,36, 634–48.

    PubMed  CAS  Google Scholar 

  • Marshak, D.W. and Dowling, J.E. (1987) Synapses of cone horizontal cell axons in goldfish retina. Journal of Comparative Neurology ,256, 430–43.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, J. and Voaden, M.J. (1974) An autoradiographic study of the cells accumulating 3H-gamma-aminobutyric acid in the isolated retinas of pigeons and chickens. Investigative Ophthalmology and Visual Science ,13, 602–7.

    CAS  Google Scholar 

  • Martin, D.L. (1976) Carrier-mediated transport and removal of GABA from synaptic regions, in GABA in Nervous System Function ,eds. E. Roberts, T.N. Chase, and D.B. Tower, Raven Press, New York, pp. 347–86.

    Google Scholar 

  • Massey, S.C. (1990) Cell types using glutamate as a neurotransmitter in the vertebrate retina. Progress in Retinal Research, 9 ,399–425.

    Article  CAS  Google Scholar 

  • Messersmith, E.K. and Redburn, D.A. (1993) The role of GABA during development of the outer retina in the rabbit. Neurochemical Research ,18, 463–70.

    Article  PubMed  CAS  Google Scholar 

  • Miller, A.M. and Schwartz, E.A. (1983) Evidence for the identification of synaptic transmitters released by photoreceptors of the toad retina. Journal of Physiology (London) ,334, 325–49.

    CAS  Google Scholar 

  • Moore, C.L. (1971) Specific inhibition of mitochondrial Ca++ transport by ruthenium red. Bio-chemical and Biophysical Research Communications ,42, 298–305.

    Article  CAS  Google Scholar 

  • Moran, J. and Pasantes-Morales, H. (1983) Effects of excitatory amino acids, and of their agonists and antagonists on the release of neurotransmitters from the chick retina. Journal of Neuros-cience Research ,10, 261–71.

    Article  CAS  Google Scholar 

  • Moran, J., Pasantes-Morales, H. and Redburn, D. A. (1986) Glutamate receptor agonists release 3H. GABA preferentially from horizontal cells. Brain Research ,398, 276–87.

    Article  PubMed  CAS  Google Scholar 

  • Mosinger, J. and Yazulla, S. (1987) Double-label analysis of GAD-and GABA-like immunoreactivity in the rabbit retina. Vision Research ,27, 23–30.

    Article  PubMed  CAS  Google Scholar 

  • Mosinger, J.L., Studholme, K.M. and Yazulla, S. (1986) Immunocytochemical localization of GABA in the retina: a species comparison. Experimental Eye Research ,42 631–44.

    Article  PubMed  CAS  Google Scholar 

  • Murakami, M., Ohtsu, K. and Ohtsuka, T. (1972) Effects of chemicals on receptors and horizontal cells in the retina. Journal of Physiology (London) ,227, 899–913.

    CAS  Google Scholar 

  • Murakami, M., Ohtsuka, T. and Shimazaki, H. (1975) Effects of aspartate and glutamate on the bipolar cells in the carp retina. Vision Research ,15, 456–8.

    Article  PubMed  CAS  Google Scholar 

  • Murakami, M., Shimoda, Y., Nakatani, K. et al. (1982a) GABA-mediated negative feedback and color opponency in carp retina. Japanese Journal of Physiology ,32, 927–35.

    Article  PubMed  CAS  Google Scholar 

  • Murakami, M., Shimoda, Y., Nakatani, K. et al (1982b) GABA-mediated negative feedback from horizontal cells to cones in carp retina. Japanese Journal of Physiology ,32, 911–26.

    Article  PubMed  CAS  Google Scholar 

  • Neal, M.J. and Atterwill, C.K. (1974) Isolation of photoreceptor and conventional nerve terminals by subcellular fractionation of rabbit retina. Nature ,251, 331–3.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, Y., Schwartz, M.L. and Rakic, P. (1985) Localization of 7-aminobutyric acid and glutamic acid decarboxylase in rhesus monkey retina. Brain Research ,359, 351–55.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, D.R. and Dowling, J.E. (1985) Dopaminergic regulation of GABA release from the intact goldfish retina. Brain Research ,360, 41–50.

    Article  PubMed  Google Scholar 

  • O’Dell, T.J. and Christensen, B.N. (1986) N-methyl-D-aspartate coexist with kainate and quisqualate receptors on single isolated catfish horizontal cells. Brain Research ,381, 359–62.

    Article  PubMed  Google Scholar 

  • O’Dell, T.J. and Christensen, B.N. (1989) A voltage-clamp study of isolated stingray horizontal cell non-NMDA excitatory amino acid receptors. Journal of Neurophysiology ,61,162–72.

    PubMed  Google Scholar 

  • O’Fallon, J.V., Brosemer, R.W. and Harding, J.W. (1980) The Na+, K+ATPase: a plausible trigger for voltage independent release of cytoplasmic neurotransmitters. Journal of Neurochemistry ,36, 369–78.

    Article  Google Scholar 

  • O’Malley, D.M., Sandell, J.H. and Masland, R.H. (1992) Co-release of acetylcholine and GABA by the starburst amacrine cells. Journal of Neuroscience ,12, 1394–408.

    PubMed  Google Scholar 

  • Perez, M.T.R. and Bruun, A. (1987) Colocalization of [3H]-adenosine accumulation and GABA immunoreactivity in the chicken and rabbit retinas. Histochemistry ,87, 413–17.

    Article  PubMed  CAS  Google Scholar 

  • Perez, M.T.R. and Ehinger, B. (1989) Multiple neurotransmitter systems influence the release of adenosine derivatives from the rabbit retina. Neurochemistry International ,15, 411–20.

    Article  PubMed  CAS  Google Scholar 

  • Perez, M.T.R., Ehinger, B., Lindstrom, K. and Fredholm, B.B. (1986) Release of endogenous and radioactive purines from the rabbit retina. Brain Research ,398, 106–12.

    Article  PubMed  CAS  Google Scholar 

  • Perlman, I., Normann, R.A. and Anderton, P.J. (1987) The effects of prolonged superfusions with acidic amino acids and their agonists on field potentials and horizontal cell photoresponses in the turtle retina. Journal of Neurophysiology ,57, 1022–32.

    PubMed  CAS  Google Scholar 

  • Pourcho, R.G. and Owczarzak, M.T. (1989) Distribution of GABA immunoreactivity in the cat retina: a light-and electron-microscopic study. Visual Neuroscience, 2 ,425–35.

    Article  PubMed  CAS  Google Scholar 

  • Prince, D.J., Djamgoz, M.B.A. and Karten, H.J. (1987) GABA transaminase in cyprinid fish retina: localization and effects of inhibitors on temporal characteristics of S-potentials. Neurochemistry International ,11, 23–30.

    Article  PubMed  CAS  Google Scholar 

  • Redburn, D.A. (1977) Uptake and release of [14C]-GABA from rabbit retina synaptosomes. Experimental Eye Research ,25, 265–75.

    Article  PubMed  CAS  Google Scholar 

  • Reed, K. C. and Bygrave, F.L. (1974) The inhibition of mitochondrial calcium transport by lanthanides and ruthenium red. Biochemical Journal 140, 143–55.

    PubMed  CAS  Google Scholar 

  • Rowe, J.S. and Ruddock, K.H. (1982) Depolarization of retinal horizontal cells by excitatory amino acid neurotransmitter agonists. Neuroscience Letters ,30, 257–62.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, H. and Naka, K. (1983) Synaptic organization involving receptor, horizontal and on-and off-center bipolar cells in the catfish retina. Vision Research ,23, 339–51.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, H. and Naka, K.-I. (1985) Novel pathway connecting the outer and inner vertebrate retina. Nature ,315, 570–1.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, H.M. and Naka, K. (1986) Synaptic organization of the cone horizontal cells in the catfish retina. Journal of Comparative Neurology ,245, 107–15.

    Article  PubMed  CAS  Google Scholar 

  • Sandoval, M.E. (1980) Sodium-dependent efflux of [3H]GABA from synaptosomes probably related to mitochondrial calcium mobilization. Journal of Neurochemistry ,35, 915–21.

    Article  PubMed  CAS  Google Scholar 

  • Schnitzer, J. and Rusoff, A.C. (1984) Horizontal cells of the mouse retina contain glutamic acid decarboxylase-like immunoreactivity during early developmental stages. Journal of Neuroscience ,4, 2948–55.

    PubMed  CAS  Google Scholar 

  • Schwartz, E.A. (1982) Calcium-independent release of GABA from isolated horizontal cells of the toad retina. Journal of Physiology (London) ,323, 211–27.

    CAS  Google Scholar 

  • Schwartz, E.A. (1986) Synaptic transmission in amphibian retinae during conditions unfavourable for calcium entry into presynaptic terminals. Journal of Physiology (London) ,376, 411–28.

    CAS  Google Scholar 

  • Schwartz, E.A. (1987) Depolarization without calcium can release 7-aminobutyric acid from a retinal neuron. Science ,238, 350–5.

    Article  PubMed  CAS  Google Scholar 

  • Sherry, D.S. and Yazulla, S. (1993) A simple Golgi/ immunocytochemical double-labelling technique to identify neurotransmitter content of Golgi impregnated neurons. Journal of Neuroscience Methods ,46, 41–8.

    Article  PubMed  CAS  Google Scholar 

  • Sillman, A.J., Ito, H. and Tomita, T. (1969) Studies on the mass receptor potential of the isolated frog retina. I. General properties of the response. Vision Research ,9, 1435–42.

    Article  PubMed  CAS  Google Scholar 

  • Slaughter, M.M. and Miller, R.F. (1983) The role of excitatory amino acid transmitters in the mudpuppy retina: an analysis with kainic acid and N-methyl aspartate. Journal of Neuroscience ,3, 1701–11.

    PubMed  CAS  Google Scholar 

  • Smiley, J.F. and Yazulla, S. (1990) Glycinergic contacts in the outer plexiform layer of the Xenopus laevis retina characterized by antibodies to glycine, GABA, and glycine receptors. Journal of Comparative Neurology ,299, 375–88.

    Article  PubMed  CAS  Google Scholar 

  • Stell, W.K. (1967) The structure and relationships of horizontal cells and photoreceptor-bipolar synaptic complexes in goldfish retina. American Journal of Anatomy ,120, 401–24.

    Article  Google Scholar 

  • Stell, W.K. (1975) Horizontal cell axons and axon terminals in goldfish retina. Journal of Comparative Neurology ,159, 503–20.

    Article  PubMed  CAS  Google Scholar 

  • Stell, W.K., Lightfoot, D.O., Wheeler, T.G., and Leeper, H.F. (1975) Goldfish retina: functional polarization of cone horizontal cell dendrites and synapses. Science ,190, 989–90.

    Article  PubMed  CAS  Google Scholar 

  • Studholme, K.M. and Yazulla, S. (1994) 3H-adenosine derived uptake labels rod horizontal cells in the goldfish retina. Investigative Ophthalmology and Visual Science ,35 (Suppl.) 2153.

    Google Scholar 

  • Tachibana, M. and Kaneko, A. (1984) gamma-Aminobutyric acid acts at axon terminals of turtle photoreceptors: difference in sensitivity among cell types. Proceedings of the National Academy of Science of the United States of America ,81, 7961–4.

    Article  CAS  Google Scholar 

  • Tapia, R. and Arias, C. (1982) Selective stimulation of neurotransmitter release from chick retina by kainic and glutamic acids. Journal of Neurochemistry ,39, 1169–78.

    Article  PubMed  CAS  Google Scholar 

  • Van Buskirk, R. and Dowling, J.E. (1981) Isolated horizontal cells from carp retina demonstrate dopamine-dependent accumulation of cyclic AMP. Proceedings of the National Academy of Sciences of the United States of America ,78, 7825–9.

    Article  PubMed  Google Scholar 

  • Van Haesendonck, E. and Missotten, L. (1992) Three types of GABA-immunoreactive cone horizontal cells in teleost retina. Visual Neuroscience ,8, 443–S.

    Article  PubMed  Google Scholar 

  • Vizi, E.S. (1978) Na+K+-activated adenosinetriphosphatase as a trigger in transmitter release. Neuroscience ,3, 367–84.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, H.-J. (1980) Light-dependent plasticity of the morphology of horizontal cell terminals incone pedicles of fish retinas. Journal of Neurocytology ,9, 573–90.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, H.-J. and Djamgoz, M.B.A. (1993) Spinules: a case for retinal synaptic plasticity. Trends in Neuroscience ,16, 201–6.

    Article  CAS  Google Scholar 

  • Wässle, H. and Chun, M.H. (1989) GABA-like immunoreactivity in the cat retina: light microscopy. Journal of Comparative Neurology ,279, 43– 54.

    Article  PubMed  Google Scholar 

  • Weiler, R. and Zettler, F. (1979) The axon bearing horizontal cells in the teleost retina are functional as well as structural units. Vision Research ,19, 1261–8.

    Article  PubMed  CAS  Google Scholar 

  • Werblin, F.S. and Dowling, J.E. (1969) Organization of the retina of the mudpuppy, II. Intracellular recording. Journal of Neurophysiology ,32, 339–355.

    PubMed  CAS  Google Scholar 

  • Witkovsky, P. and Dowling, J.E. (1969) Synaptic relationships in the plexiform layers of carp retina. Zeitschrift f ür Zellforschung und Mikroskopisne Anatomie ,100, 60–82.

    Article  CAS  Google Scholar 

  • Witkovsky, P. and Powell, C.C. (1981) Synapse formation and modification between distal retinal neurons in larval and juvenile Xenopus. Proceedings of the Royal Society of London ,211, 373–89.

    Article  PubMed  CAS  Google Scholar 

  • Wu, S.M. (1986) Effects of gamma-aminobutyric acid on cones and bipolar cells of the tiger salamander retina. Brain Research ,365, 70–7.

    Article  PubMed  CAS  Google Scholar 

  • Wu, S.M. (1992) Feedback connections and operation of the outer plexiform layer of the retina. Current Opinions in Neurobiology, 2 ,462–8.

    Article  CAS  Google Scholar 

  • Wu, S.M. and Dowling, J.E. (1978) L-Aspartate: evidence for a role in cone photoreceptor synaptic transmission in the carp retina. Proceedings of the National Academy of Science of the United States of America ,75, 5205–9.

    Article  CAS  Google Scholar 

  • Wu, S.M. and Dowling, J.E. (1980) Effects of GABA and glycine on the distal cells of the cyprinid retina. Brain Research ,199, 401–14.

    Article  PubMed  CAS  Google Scholar 

  • Yasui, S. (1987) Ca and Na homeostasis in horizontal cells of the cyprinid fish retina: evidence for Na-Ca exchanger and Na-K pump. Neuroscience Research Suppl. 6, S133– S146.

    Article  CAS  Google Scholar 

  • Yazulla, S. (1983) Stimulation of GABA release from retinal horizontal cells by potassium and acidic amino acid agonists. Brain Research ,275, 61–74.

    Article  PubMed  CAS  Google Scholar 

  • Yazulla, S. (1985a) Evoked efflux of 3H-GABA from goldfish retina in the dark. Brain Research ,325, 171–80.

    Article  PubMed  CAS  Google Scholar 

  • Yazulla, S. (1985b) Factors controlling the release of GABA from goldfish retinal horizontal cells. Neuroscience Research Suppl. 2, S147–S165.

    Article  CAS  Google Scholar 

  • Yazulla, S. (1986) GABAergic mechanisms in the retina. Progress in Retinal Research ,5, 1–52.

    Article  CAS  Google Scholar 

  • Yazulla, S. (1991) The mismatch problem for GABAergic amacrine cells in goldfish retina: Resolution and other issues. Neurochemical Research ,16, 327–39.

    Article  PubMed  CAS  Google Scholar 

  • Yazulla, S. and Kleinschmidt, J. (1982) Dopamine blocks carrier-mediated release of GABA from retinal horizontal cells. Brain Research ,233, 211–15.

    Article  PubMed  CAS  Google Scholar 

  • Yazulla, S. and Kleinschmidt, J. (1983). Carriermediated release of GABA from retinal horizontal cells. Brain Research ,263, 63–75.

    Article  PubMed  CAS  Google Scholar 

  • Yazulla, S. and Studholme, K.M. (1987) Ultracytochemical distribution of ouabain-sensitive, K+dependent, p-nitrophenylphosphatase in the synaptic layers of goldfish retina. Journal of Comparative Neurology ,261, 74r-84.

    Article  PubMed  CAS  Google Scholar 

  • Yazulla, S. and Yang, C.-Y. (1988) Colocalization of GABA-and glycine-immunoreactivities in a subset of retinal neurons in tiger salamander. Neuroscience Letters ,95, 37–41.

    Article  PubMed  CAS  Google Scholar 

  • Yazulla, S., Neal, M.J. and Cunningham, J. (1985). Stimulated release of endogenous GABA and glycine from the goldfish retina. Brain Research ,345, 384–8.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Z.J., Fain, G.L. and Dowling, J.E. (1993) The excitatory and inhibitory amino acid receptors on horizontal cells isolated from the white perch retina. Journal of Neurophysiology ,70, 8–19.

    PubMed  CAS  Google Scholar 

  • Zucker, C., Yazulla, S. and Wu, J. (1984) Noncorrespondence of 3H-GABA uptake and GAD localization in goldfish amacrine cells. Brain Research ,298, 154–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yazulla, S. (1995). Neurotransmitter release from horizontal cells. In: Djamgoz, M.B.A., Archer, S.N., Vallerga, S. (eds) Neurobiology and Clinical Aspects of the Outer Retina. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0533-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0533-0_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4237-6

  • Online ISBN: 978-94-011-0533-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics