Skip to main content

Plastic forming of ceramics: extrusion and injection moulding

  • Chapter

Abstract

Extrusion is a plastic forming method. It is limited to objects of constant cross section and is best suited to objects with high symmetry such as rods, tubes, honeycomb structures and channels. Table 6.1 gives an extensive list of extruded ceramics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Janney, M.A., Vance, M.C., Jordan, A.C. and Kertez, M.P. (1986) Bibliography of Ceramic Extrusion and Plasticity, Report No. ORNL 6363, Oak Ridge, TN.

    Google Scholar 

  2. Bagley, R.D. (1974) Method for forming thinwalled honeycomb structures. US Patent 3, 790, 654.

    Google Scholar 

  3. Onoda, Jr. G.Y. (1978) The rheology of organic binder solutions in Ceramic Processing Before Firing (eds G.Y. Onoda, Jr. and L.L. Hench) J. Wiley and Sons, NY.

    Google Scholar 

  4. Whittemore, J.W. (1944) Industrial use of plasticizers, binders, and other auxiliary agents. Am. Ceram. Soc. Bull., 23, 427–432.

    CAS  Google Scholar 

  5. McNamarra, E.P. and Comefora, J.E. (1945) Classification of natural organic binders. J. Am. Ceram. Soc., 28, 25–31.

    Article  Google Scholar 

  6. Treischel, C.C. and Emrich, E.W. (1946) Study of several groups of organic binders under low pressure extrusion. J. Am. Ceram. Soc., 29, 129–132.

    Article  CAS  Google Scholar 

  7. Wild, A. (1954) Review of organic binders for use in structural clay products. Am. Ceram. Soc. Bull., 33, 368–370.

    Google Scholar 

  8. Morse, T. (1979) Handbook of Organic Additives for Use in Ceramic Body Formulation, Montana MHD Research and Development Institute, Butte, MT.

    Google Scholar 

  9. Morawetz, H. (1965) Macromolecules in Solution, Wiley-Interscience, NY.

    Google Scholar 

  10. Yamakawa, H. (1971) Modern Theory of Polymer Solutions, Harper and Row, NY.

    Google Scholar 

  11. Elias, H.G. (1984) Macromolecules, Plenum Press, NY.

    Google Scholar 

  12. Schieffele, G.W. and Sacks, M.D. (1988) Pyrolysis of poly(vinylbutyral) binders, in Ceramic Powder Science. II (eds G.L. Messing, E.R. Fuller and H. Hausner) American Ceramic Society, Westerville, OH.

    Google Scholar 

  13. Anon, (1991) Synthetics, Screening and Filtration Media, Tetko, Inc., Briarcliff Manor, NY.

    Google Scholar 

  14. Anon. (1990) Continuous Concept Screen Changers, High Technology Corp., Hackensack, NJ.

    Google Scholar 

  15. Strivens, M. A. (1963) Injection molding of ceramic insulating materials. Am. Ceram Soc Bull., 42, 13–19.

    CAS  Google Scholar 

  16. Janney, M.A. and Onoda, Jr. G.Y. (1987) Particulate mechanics of highly loaded ceramic systems. Adv. Ceram., 21, 615–626.

    CAS  Google Scholar 

  17. Goodson, F.J. (1959) Experiments in extrusion. Trans. Br. Ceram Soc., 58, 158–187.

    Google Scholar 

  18. Arakawa, M., Banerjee, S. and Williamson W.O.(1971) Extrusion behaviour of hard shale. Am. Ceram. Soc Bull., 50, 933–935.

    CAS  Google Scholar 

  19. Janney, M.A. (1982) Plasticity of Ceramic Particulate Systems, PhD. Dissertation, University of Florida.

    Google Scholar 

  20. Atkinson, J.H. and Bransby P.L. (1978) Mechanics of Soils, McGraw-Hill, Maidenhead, UK.

    Google Scholar 

  21. Schofield, A.N. and Wroth C.P. (1968) Critical State Soil Mechanics, McGraw-Hill, Maidenhead, UK.

    Google Scholar 

  22. Russel, R. and Hanks, Jr. C.F (1942) Stress-strain characteristics of plastic clay masses. J. Am. Ceram. Soc., 25, 16–28.

    Article  Google Scholar 

  23. Han, C.D. (1976) Rheology in Polymer Processing, Academic Press, NY.

    Google Scholar 

  24. Mosthaf, E. (1949) Long extrusion dies cut losses. Ceram. Ind (Sevres, France) 53, 70.

    Google Scholar 

  25. Butterworth, B., Baldwin, L.W. and Coley, S.G. (1966) Dies for extruding perforated bricks. J. Br. Ceram. Soc., 3, 563.

    Google Scholar 

  26. Lachman, I.M., Bagley, R.D. and Lewis R.M. (1981) Thermal expansion of extruded cordierite ceramics. Am. Ceram. Soc. Bull., 60, 202.

    CAS  Google Scholar 

  27. Robinson, G. (1978) Extrusion defects, in Ceramic Processing Before Firing (eds G.Y. Onoda, Jr. and L.L. Hench) J. Wiley and Sons, NY.

    Google Scholar 

  28. Robinson, G.C., Kizer, R.H. and Duncan, J.F. (1968) Raw material parameters determining extrudability. Am. Ceram. Soc. Bull., 47, 822–832.

    Google Scholar 

  29. Seanor, J.G. and Schweitzer, W.P. (1962) Basic theoretical factors in extrusion augers. Am. Ceram. Soc Bull., 41, 560–563.

    Google Scholar 

  30. Lund, H.H., Bortz, S.A. and Reed, A.J. (1962) Auger design for clay extrusion. Am. Ceram. Soc Bull., 41, 554–559.

    Google Scholar 

  31. Parks, J.R. and Hill, M.J. (1950) Design of extrusion augers and the characteristic equation of ceramic extrusion machines. J. Am. Ceram. Soc., 42, 1–6.

    Article  Google Scholar 

  32. Tarpley, W.B., Yocum, K.H. and Pheasant, R. (1961) Ultrasonic Extrusion: Reduction in Vehicle and Plasticizer Requirements for Non-Clay Ceramics, USAEC Report No. NYO-10006, New York.

    Google Scholar 

  33. Zavanovic, B.M. and Janjic, O.G. (1978) Cold forming of heavy clay products by the double layer technique. Ceramurgia, 8, 201–206.

    Google Scholar 

  34. Frados, J. (ed) (1976) Plastics Engineering Handbook, Van Nostrand Reinhold, NY.

    Google Scholar 

  35. Rubin, I. (1973) Injection Molding of Plastics, J. Wiley and Sons, NY.

    Google Scholar 

  36. Haglund, T.R. (1936) Process of producing refractory. US Patent 2, 048, 861.

    Google Scholar 

  37. Schwartzwalder, K. (1949) Injection molding of ceramic materials. Am. Ceram. Soc. Bull., 28, 459–461.

    CAS  Google Scholar 

  38. Edirisinghe, M.J. and Evans, J.R.G. (1986) Review: fabrication of engineering ceramics by injection molding. I. Materials selection. Int. J. High Technol. Ceram., 2, 1–31.

    Article  CAS  Google Scholar 

  39. Edirisinghe, M.J. and Evans, J.R.G. (1986) Review: fabrication of engineering ceramics by injection molding. II. Techniques. Int. J. High Technol Ceram., 2, 249–278.

    Article  CAS  Google Scholar 

  40. White, J.L. and Dee, H.B. (1974) Flow visualization for injection molding of polyethylene and polystyrene melts. Polym. Eng. Sci., 14, 212–222.

    Article  Google Scholar 

  41. Edirisinghe, M.J. (1991) Fabrication of engineering ceramics by injection molding. Am. Ceram. Soc Bull., 70, 824.

    CAS  Google Scholar 

  42. Bandyopadhyay, G. and French, K.W. (1994) Effect of powder characteristics on injection molding and burnout cracking. Am. Ceram. Soc Bull., 73, 107–114.

    CAS  Google Scholar 

  43. Horton, R.A. (1974) Molded refractory articles, US Patent 3, 859, 405.

    Google Scholar 

  44. Prokaev, V.P., Kashirnikov V.M. (1976) Ceramic mixture, containing ethyl silicate, gel inducer, zircon, and disthene-silimanite, for producing injection moulds and rods, primarily for casting aluminum alloys. USSR Patent SU 535131.

    Google Scholar 

  45. Pratilio, F. (1985) Equipment Catalogue, Educational Machinery Corporation, Greenwich, CT.

    Google Scholar 

  46. Pasto, A.E. and Natansohn, S. (1991) Development of Improved processing for High Reliability Structural Ceramics for Advanced heat Engines. Final Report, GTE Labs TR-0172-12-91-800, Oak Ridge, TN, USA.

    Google Scholar 

  47. Zhang, H., German, R.M. and Bose, A. (1990) Wick debinding distortion of injection molded powder compacts. Int. J. Powder Met., 26, 217.

    Google Scholar 

  48. Wright, J.K. and Evans, J.R.G. (1991) Removal of organic vehicle from moulded ceramic bodies by capillary action. Ceram. Int., 17, 9–87.

    Article  Google Scholar 

  49. Mutsuddy, B.C. (1983) Injection molding research paves way to ceramic engine parts. Ind. Res. Dev., July 76-77.

    Google Scholar 

  50. Peltsman, M. (1986) Low pressure injection moulding and mould design. M PR, May 367-369.

    Google Scholar 

  51. German, R.M. and Hens, K.F. (1991) Key issues in powder injection molding. Am. Ceram. Soc. Bull., 70, 1294.

    CAS  Google Scholar 

  52. Zhang, J.G., Edirisinghe, M.J. and Evans, J.R.G. (1989) A catalogue of ceramic injection moulding defects and their causes. Ind. Ceram., 9, 72.

    CAS  Google Scholar 

  53. Blanchard, E.G. (1991) Pressure casting improves productivity. Am. Ceram. Soc. Bull., 67, 1680–1683.

    Google Scholar 

  54. Novich, B.E., Sundback, C.A. and Adams, R.W (1992) Quickset injection molding of high performance ceramics. Ceram. Trans., 26, 157–164.

    CAS  Google Scholar 

  55. Rivers, R.D. (1976) Method of injection molding powder metal parts, US Patent 4, 113, 480.

    Google Scholar 

  56. Fanelli, A.J., Silvers, R.D., Frei, W.S., Burlew, J.V. and Marsh, G.B. (1989) New aqueous injection molding process for ceramic powders. J. Am. Ceram. Soc., 72, 1833–1833.

    Article  CAS  Google Scholar 

  57. Young, A.C., Omatete, O.O., Janney, M.A. and Menchhofer, P.A. (1991) Gelcasting of alumina J. Am. Ceram. Soc., 74, 612–616.

    Article  CAS  Google Scholar 

  58. Omatete, O.O., Janney, M.A. and Strehlow, R.A. (1991) Gelcasting — a new ceramic forming process. Am. Ceram. Soc Bull., 70, 1641–1646.

    CAS  Google Scholar 

  59. Crutchfield, M.M. (1982) Reversible deflocculation of clay slurries, US. Patent 4, 327, 189.

    Google Scholar 

  60. Johnson, A., Carlstrom, E., Heimansson, L. and Carlsson, R. (1984) Rate-controlled thermal extraction of organic binders from injection-molded bodies, in Advances in Ceramics, Vol. 9, Forming of Ceramics (eds J.A. Mangels and G.L. Messing) American Ceramic Society, Columbus, OH.

    Google Scholar 

  61. Bandyopadhyay, G., French, K.W., Bowen, L.J. and Neil, J.T. (1986) Large cross section injection molded ceramic shapes, Eur. Pat. Appl. EP 196600.

    Google Scholar 

  62. Miyauchi, J. and Kobayashi, Y. (1985) Development of silicon nitride turbine rotors SAE Tech. Pap. Ser., No 850313.

    Google Scholar 

  63. Pujari, V.K., Amin, K.E. and Tewari, P.H. (1991) Development of improved processing and evaluation of silicon nitride, in Proc. 28th ATD-CCM, SAE P243, April, 1991. Society of Automotive Engineers, Detroit, MI, USA.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Janney, M.A. (1995). Plastic forming of ceramics: extrusion and injection moulding. In: Terpstra, R.A., Pex, P.P.A.C., de Vries, A.H. (eds) Ceramic Processing. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0531-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0531-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4236-9

  • Online ISBN: 978-94-011-0531-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics