Skip to main content

Physiology and biochemistry of leaves under iron deficiency

  • Chapter
Iron Nutrition in Soils and Plants

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 59))

Abstract

Iron-deficiency induced leaf chlorosis is a widespread physiological disorder which has serious consequences for agricultural production. The study of the physiology and biochemistry of this disorder has provided reserachers with a unique experimental tool to study photosynthetic limitation in vivo. This article reviews the state of knowledge about the influence of iron deficiency on leaf growth, thylakoid formation and chlorophyll biosynthesis, light harvesting and photosynthetic electron transport, and photosynthetic CO2 fixation and reduction. The effects of iron deficiency-mediated reduction in photosynthetic electron transport capacity on photosynthetic rate is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abadia A, Ambrad-Bretteville F, Remy R and Tremolieres A 1988 Iron-deficiency in pea leaves: effect on lipid composition and synthesis. Physiol. Plant. 72, 713–717.

    Article  CAS  Google Scholar 

  • Abadia A, Lemoine Y, Tremolieres A, Ambard-Bretteville F and Remy R 1989a Iron deficiency in pea: effects on pigment, lipid and pigment-protein complex composition of thylakoids. Plant Physiol. Biochem. 27, 679–687.

    CAS  Google Scholar 

  • Abadia A, Sanz M, de las Rivas J and Abadia J 1989b Pear yellowness: an atypical form of iron chlorosis? Acta Hortic. 256, 177–181.

    Google Scholar 

  • Abadia A, Morales F and Abadia J 1990 Iron deficiency-induced mechanisms of dissipation of excess energy in higher plants. Curr. Res. Photosynthesis IV, 757–760.

    Google Scholar 

  • Abadia A, Poc A and Abadia J 1991 Could iron nutrition status be evaluated through photosyntheticpigment changes? J. Plant Nutr. 14, 987–999.

    Article  CAS  Google Scholar 

  • Abadia J 1992 Leaf responses to Fe deficiency: a review. J. Plant Nutr. 15, 1699–1713.

    Article  CAS  Google Scholar 

  • Abadia J, Monge E, Montañés L and Heras L 1984 Iron extraction from plant leaves by Fe(II) chelators. J. Plant Nutr. 7, 777–784.

    Article  CAS  Google Scholar 

  • Abadia J, Glick R E, Taylor S E, Terry N and Melis A 1985a Photochemical apparatus organization in the chloroplasts of the two Beta vulgaris genotypes. Plant Physiol. 79, 872–878.

    Article  PubMed  CAS  Google Scholar 

  • Abadia J, Nishio J N and Terry N 1985b Chlorophyll-protein and polypeptide composition of Mn-deficient sugarbeet thylakoids. Photosyn. Res. 7, 237–245.

    Article  Google Scholar 

  • Almela A, Garcia A L and Madrid R 1983 Deficiencia de hierro en plantas de maiz. Efecto sobre la actividad clorofilasa, clorofilas, feofitinas y proteinas en hoja. Agrochimica 27, 123–131.

    CAS  Google Scholar 

  • Arulanantham A R, Rao I M and Terry N 1990 Limiting factors in photosynthesis. VI. Regeneration of Ribulose bl,5-Bisphosphate limits photosynthesis at low photochemical capacity. Plant Physiol. 93, 1466–1475.

    Article  PubMed  CAS  Google Scholar 

  • Bindra A S 1980 Iron chlorosis in horticultural and field crops. Annu. Rev. Plant Sci. II, 221–312.

    Google Scholar 

  • Böddi B, Cseh E and Lang F 1985 Fluorescence spectroscopy of iron-deficient plants. J. Plant Physiol. 118, 451–461.

    Article  PubMed  Google Scholar 

  • Booss A, Kolesch H and Höfner W 1983 Measurements of “active iron” in plants by extraction with citrate buffer. Z. Pflanzenernaehr. Bodenkd. 146, 401–404. (In German).

    Article  CAS  Google Scholar 

  • Buchanan B B 1991 Regulation of CO2 assimilation in oxygenic photosynthesis: the ferredoxin/thioredoxin system. Perspective on its discovery, present status, and future development. Arch. Biochem. Biophys. 288, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Chereskin B and Castelfranco P 1982 Effects of iron and oxygen on chlorophyll biosynthesis. II. Observations on the biosynthetic pathway in isolated etiochloroplasts. Plant Physiol. 69, 112–116.

    Article  PubMed  CAS  Google Scholar 

  • DeKock P C 1981 Iron nutrition under conditions of stress. J. Plant Nutr. 3, 513–521.

    Article  CAS  Google Scholar 

  • Diez M C 1959 Photochemical decomposition of chlorophyll in cases of iron-induced chlorosis. An. Aula Dei 6, 1–80. (In Spanish).

    Google Scholar 

  • Fernandez-Lopez J A, Almela L, Lopez-Roca J M and Alcaraz C 1991 Iron deficiency in citrus lemon: effects on photo-chlorophyllase synthetic pigments and chlorophyllase activity. J. Plant Nutr. 14, 1133–1144.

    Article  CAS  Google Scholar 

  • Giersch C and Robinson S P 1987 Regulation of photosynthetic carbon metabolism during phosphate limitation of photosynthesis in isolated spinach chloroplasts. Photosyn. Res. 14, 211–227.

    Article  CAS  Google Scholar 

  • Guikema J A and Sherman L A 1983 Organization and function of chlorophyll in membranes of cyanobacteria during iron starvation. Plant Physiol. 73, 250–256.

    Article  PubMed  CAS  Google Scholar 

  • Hewitt E J 1983 Essential and functional metals in plants. In Metals and Micronutrients: Uptake and Utilization by Plants. Eds. D A Robb and W S Pierpoint, pp 277–323. Academic Press, New York.

    Google Scholar 

  • Hipkins M F 1983 Metals and photosynthesis. In Metals and Micronutrients: Uptake and Utilization by Plants. Eds. D A Robb and W S Pierpoint, pp 147–168. Academic Press, New York.

    Google Scholar 

  • Hsu W P and Miller G W 1965 Chlorophyll and porphyrin synthesis in relation to iron in Nicotiana tabacum L. Biochim. Biophys. Acta 111, 393–402.

    Article  PubMed  CAS  Google Scholar 

  • Hsu W P and Miller G W 1970 Coproporphyrinogenase in tobacco (Nicotiana tabacum L). Biochem. J. 117, 215–220.

    PubMed  CAS  Google Scholar 

  • Huang D D, Wang W Y, Gough S P and Kannangara C G 1984 Delta-aminolevulinic acid-synthesizing enzymes need an RNA moiety for activity. Science 225, 1482–1484.

    Article  PubMed  CAS  Google Scholar 

  • Huang I-J, Welkie G W and Miller G W 1992 Ferredoxin and flavodoxin analysis in tobacco in response to iron stress. J. Plant Nutr. 15, 1765–1782.

    Article  CAS  Google Scholar 

  • Huang I-J, Welkie G W and Miller G W 1992 Ferredoxin and flavodoxin analysis in tobacco in response to iron stress. J. Plant Nutr. 15, 1765–1782.

    Article  CAS  Google Scholar 

  • Katyal J C and Sharma B D 1980 A new technique of plant analysis to resolve iron chlorosis. Plant and Soil 55, 105–119.

    Article  CAS  Google Scholar 

  • Krause G H and Weis E 1991 Chlorophyll fluorescence and photosynthesis: the basics. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42, 313–349.

    Article  CAS  Google Scholar 

  • Lascelles J 1956 The synthesis of porphyrins and bacteriochloro-phyll by cell suspensions of Rhodopseudomonas sphaeroides. Biochem. J. 62, 78–93.

    PubMed  CAS  Google Scholar 

  • Lascelles J 1975 The regulating of heme and chlorophyll synthesis in bacteria. In The Biological Role of Porphyrins and Related Structures. Ed. A Alder, pp 334–337. Academy of Science, New York.

    Google Scholar 

  • Llorente S, Leon A, Torrecillas A and Alcaraz C 1976 Leaf iron fractions and their relation with iron chlorosis in citrus. Agrochim. 20, 204–212.

    CAS  Google Scholar 

  • Leegood R C, Walker D A and Foyer C H 1985 Regulation of the Benson-Calvin cycle. In Photosynthetic Mechanisms and the Environment. Eds. J Barber and N R Baker, pp 189–258. Elsevier Science Publishers BV (Biomedical Division), Amsterdam, New York, Oxford.

    Google Scholar 

  • Malkin R 1987 In Photosynthesis: The Light Reactions. Ed. J Barber. pp 495–525. Elsevier, Amsterdam, New York.

    Google Scholar 

  • Malkin R 1992 Cytochrome be1 and b6f complexes of photosynthetic membranes. Photosyn. Res. 33, 121–136.

    Article  CAS  Google Scholar 

  • Van der Mark F, van der Briel M L, van Oers J W A M and Bienfait H F 1982 Ferritin in bean leaves with constant and changing iron status. Planta 156, 341–344.

    Article  Google Scholar 

  • Mehrotra S C and Gupta P 1990 Reduction of iron by leaf extracts and its significance for the assay of Fe(II) iron in plants. Plant Physiol. 93, 1017–1020.

    Article  PubMed  CAS  Google Scholar 

  • Metz J G, Miles D and Rutherford A W 1983 Characterization of nuclear mutants of maize which lack the cytochrome f/b-563 complex. Plant Physiol. 73, 452–459.

    Article  PubMed  CAS  Google Scholar 

  • Miller G W, Denney A, Wood J and Welkie G 1979 Light induced delta-amino levulinic acid in dark-grown barley seedlings. Plant Physiol. 20, 131–143.

    CAS  Google Scholar 

  • Miller G W, Denney A, Pushnik J and Yu M-H 1982 The formation of delta-aminolevulinate, a precursor of chlorophyll, in barley and the role of iron. J. Plant Nutr. 5, 289–300.

    Article  CAS  Google Scholar 

  • Miller G W, Pushnik J C and Welkie G 1984 Iron chlorosis, a world wide problem, the relation of chlorophyll biosynthesis to iron. J. Plant Nutr. 7, 1–22.

    Article  CAS  Google Scholar 

  • Monge E, Abadia J, Sanz M, Montanes L and Heras L 1983 Deltaaminolevulinic acid in green and chlorotic plant material. An. Aula Dei. 16, 275–283. (In Spanish).

    Google Scholar 

  • Monge E, Val J, Heras L and Abadia J 1987 Photosynthetic pigment composition of higher plants grown under iron stress. In Progress in Photosynthesis Research Vol. IV. Ed. J Biggens. pp 201–204. Martinus Nijhoff Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Morales F, Abadia A and Abadia J 1990 Characterization of the xan-thophyll cycle and other photosynthetic pigment changes induced by iron deficiency in sugar beet (Beta vulgaris L.). Plant Physiol. 94, 607–613.

    Article  PubMed  CAS  Google Scholar 

  • Morales F, Abadia A and Abadia J 1991 Chlorophyll fluorescence and photon yield of oxygen evolution in iron-deficient sugar beet (Beta vulgaris L.) leaves. Plant Physiol. 97, 886–893.

    Article  PubMed  CAS  Google Scholar 

  • Naik G R and Joshi G V 1979 Photosynthetic carbon fixation in iron-chlorotic and recovered green sugarcane leaves. Plant and Soil 53, 505–511.

    Article  CAS  Google Scholar 

  • Nenova V and Stoyanov I 1993 Physiological and biochemical changes in young maize plants under iron deficiency. I. Growth and photosynthesis. J. Plant Nutr. 16, 835–849.

    Article  CAS  Google Scholar 

  • Nicholas D J D 1952 Some effects of metals in excess on crop plants grown in soil culture. III. Effects of cobalt, nickel and zinc on growth, metal and chlorophyll contents of tomato. Ann. Rep. Agric. Hortic. Res. Stn., Long Ashton, Bristol. 1951, 87–102.

    Google Scholar 

  • Nishio J N and Terry N 1983 Iron nutrition-mediated chloroplast development. Plant Physiol. 71, 688–691.

    Article  PubMed  CAS  Google Scholar 

  • Nishio J N, Taylor S E and Terry N 1985a Changes in thylakoid galactolipids and proteins during iron nutrition-mediated chloroplast development. Plant Physiol. 77, 705–711.

    Article  PubMed  CAS  Google Scholar 

  • Nishio J N, Abadia J and Terry N 1985b Chlorophyll-proteins and electron transport during iron nutrition-mediated chloroplast development. Plant Physiol. 78, 296–299.

    Article  PubMed  CAS  Google Scholar 

  • Platt-Aloia K A, Thomson W W and Terry N 1983 Changes in plastid ultrastructure during iron nutrition-mediated chloroplast development. Protoplasma 114, 85–92.

    Article  Google Scholar 

  • Price C A 1968 Iron compounds and plant nutrition. Annu. Rev. Plant Physiol. 19, 239–248.

    Article  CAS  Google Scholar 

  • Purvis A C and Barmore C R 1981 Involvement of ethylene in chlorophyll degradation in peel of citrus fruits. Plant Physiol. 68, 854–856.

    Article  PubMed  CAS  Google Scholar 

  • Pushnik J C and Miller G W 1982 The effects of iron and light treatments on chloroplast composition and ultrastructure in irondeficient barley leaves. J. Plant Nutr. 5, 311–321.

    Article  CAS  Google Scholar 

  • Quilez R, Abadia A and Abadia J 1992 Characteristics of thylakoids and photosystem II membrane preparations from iron deficient andiron sufficient sugar beet (Beta vulgaris L.). J. Plant Nutr. 15, 1809–1819.

    Article  CAS  Google Scholar 

  • Riethman H C and Sherman L A 1988 Purification and characterization of an iron stress-induced chlorophyll-protein from cyanobac-terium Anacystic nidulans R2. Biochim. Biophys. Acta. 935, 141–151.

    Article  PubMed  CAS  Google Scholar 

  • Robinson J M 1986 Carbon dioxide and nitrite photoassmilatory process do not intercompete for reducing equivalents in spinach and soybean leaf chloroplasts. Plant Physiol. 80, 676–684.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez M T, Gonzalez M P and Linares J M 1987 Degradation of chlorophyll and chlorophyllase activity in senescing barley leaves. J. Plant Physiol. 129, 369–374.

    Article  CAS  Google Scholar 

  • Rutherford A W 1985 Orientation of EPR signals arising from components in photosystem II membranes. Biochim. Biophys. Acta. 807, 189–201.

    Article  CAS  Google Scholar 

  • Sandmann G 1985 Consequences of iron deficiency on photosynthetic and respiratory electron transport in blue-green algae. Photosyn. Res. 6, 261–272.

    Article  CAS  Google Scholar 

  • Sandmann G and Malkin R 1983 Iron-sulfur centers and activities of photosynthetic electron transport chain in iron-deficient cultures of the blue-green algae Aphanocapsa. Plant Physiol. 73, 724–728.

    Article  PubMed  CAS  Google Scholar 

  • Sandmann G, Peleato M L, Fillat M F, Lazaro M C and Gomez-Moreno C 1990 Consequences of the iron-dependent formation of ferredoxin and flavodoxin on photosynthesis and nitrogen fixation on Anabaena strains. Photosyn. Res. 26, 119–125.

    Article  CAS  Google Scholar 

  • Seckback J 1982 Ferreting out the secrets of plant ferritin. A review. J. Plant Nutr. 5, 369–394.

    Article  CAS  Google Scholar 

  • Shimokawa K 1982 Hydrophobic chromatographic purification of ethylene-enhance chlrophyllase from Citrus unshiu fruits. Phy-tochemistry 21, 543–545.

    CAS  Google Scholar 

  • Spiller S C and Terry N 1980 Limiting factors in photosynthesis. II. Iron stress diminishes photochemical capacity by reducing the number of photosynthetic units. Plant Physiol. 65, 121–125.

    Article  PubMed  CAS  Google Scholar 

  • Spiller S C, Castelfrano A and Castelfrano P 1982 Effects of iron and oxygen on chlorophyll biosynthesis. I. In vivo observations of iron and oxygen-deficient plants. Plant Physiol. 69, 107–111.

    Article  PubMed  CAS  Google Scholar 

  • Spiller S C, Kaufman L S, Thompson W F and Briggs W R 1987 Specific mRNA and rRNA levels in greening pea leaves during recovery from iron stress. Plant Physiol. 84, 409–414.

    Article  PubMed  CAS  Google Scholar 

  • Taylor S E and Terry N 1984 Limiting factors in photosynthesis. V. Photochemical energy supply colimits photosynthesis at low values of intercellular CO2 concentration. Plant Physiol. 75, 82–86.

    Article  PubMed  CAS  Google Scholar 

  • Taylor S E, Terry N and Huston R P 1982 Limiting factors in photosynthesis. III. Effects of iron nutrition on the activities of three regulatory enzymes of photosynthetic carbon metabolism. Plant Physiol. 70, 1541–1543.

    Article  PubMed  CAS  Google Scholar 

  • Terry N 1979 The use of mineral nutrient stress in the study of limiting factors in photosynthesis. In Photosynthesis and Plant Development. Eds. R Marcelle, H Clijsters and M Van Poucke. pp 151–160. Dr W Junk Publishers, The Hague, Boston, London.

    Google Scholar 

  • Terry N 1980 Limiting factors in photosynthesis. I. Use of iron stress to control photochemical capacity in vivo. Plant Physiol. 65, 114–120.

    Article  PubMed  CAS  Google Scholar 

  • Terry N 1983 Limiting factors in photosynthesis. IV. Iron stress-mediated changes in light-harvesting and electron transport capacity and its effects on photosynthesis in vivo. Plant Physiol. 71, 855–860.

    Article  PubMed  CAS  Google Scholar 

  • Terry N and Abadia J 1986 Function of iron in chloroplasts. J. Plant Nutr. 9, 609–646.

    Article  CAS  Google Scholar 

  • Terry N and Farquhar G D 1984 Photochemical capacity and photosynthesis. In Control of Crop Productivity. Ed. C J Pearson, pp 43–57. Cambridge University Press.

    Google Scholar 

  • Terry N and Low G 1982 Leaf chlorophyll content and its relation to the intracellular localization of iron. J. Plant Nutr. 5, 301–310.

    Article  CAS  Google Scholar 

  • Terry N and Rao I M 1991 Nutrients and photosynthesis: iron and phosphorus as case studies. In Plant Growth: interaction with nutrition and environment. Eds. J R Porter and D W Lawlor. pp 55–79. Cambridge University Press.

    Google Scholar 

  • Thornber J P, Morishige D T, Anandan S and Peter G 1991 Chlorophyll-carotenoid proteins of higher plant thylakoids. In Chlorophyll. Ed. H Scheer. pp 549–585. CRC Press Boca Raton Ann Arbor, Boston, London.

    Google Scholar 

  • Val J, Heras L, Monge E and Abadia J 1987 Changes in photosynthetic pigment composition in higher plants as affected by iron nutrition status. J. Plant Nutr. 10, 955–1001.

    Article  Google Scholar 

  • Woodrow I E and Berry J A 1988 Enzymatic regulation of photosynthetic CO2 fixation in C3 plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 39, 533–594.

    Article  CAS  Google Scholar 

  • Wynn R M and Malkin R 1988 Characterization of an isolated chloro-plast membrane Fe-S protein and its identification as the photo-system I Fe-SA/Fe-SB binding protein. FEBS Lett. 229, 293–297.

    Article  CAS  Google Scholar 

  • Yu M-H and Miller G W 1982 Formation of delta-aminolevulinic acid in etiolated and iron-stressed barley. J. Plant Nutr. 5, 1259–1271.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Abadía

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Terry, N., Zayed, A.M. (1995). Physiology and biochemistry of leaves under iron deficiency. In: Abadía, J. (eds) Iron Nutrition in Soils and Plants. Developments in Plant and Soil Sciences, vol 59. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0503-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0503-3_41

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4224-6

  • Online ISBN: 978-94-011-0503-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics