Skip to main content

3-D Structure of Acetylcholinesterase and Its Complexes with Anticholinesterase Agents

  • Conference paper
Modelling of Biomolecular Structures and Mechanisms

Part of the book series: The Jerusalem Symposia on Quantum Chemistry and Biochemistry ((JSQC,volume 27))

  • 79 Accesses

Abstract

The principal biological role of acetylcholinesterase (AChE) is termination of impulse transmission at cholinergic synapses by rapid hydrolysis of the neurotransmitter acetylcholine (ACh). Based on our recent X-ray crystallographic structure determination of AChE from Torpedo californica we can see, at atomic resolution, a protein binding pocket for the neurotransmitter ACh. We found that the active site consists of a catalytic triad (Ser200-His440-Glu327) which lies close to the bottom of a deep and narrow gorge, that is lined with the rings of 14 aromatic amino acid residues. Despite the complexity of this array of aromatic rings, we suggested, on the basis of modelling which involved docking of the ACh molecule in an all-trans conformation, that the quaternary group of the choline moiety makes close contact with the indole ring of Trp84. In order to study experimentally this interaction, in detail, we soaked into crystals of AChE a series of different inhibitors, including the competitive inhibitor edrophonium (EDR) and the transition-state analog (N,N,N-trimethylammonio) trifluoroacetophenone (TFK), and determined their 3-D structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. A. Barnard:‘Neuromuscular Transmission - Enzymatic Destruction of Acetylcholine’, in J. I.Hubbard, Ed.,ThePeripheral Nervous System, Plenum, New York, p. 201 (1974).

    Chapter  Google Scholar 

  2. B.Katz: Nerve. Muscle and Synapse, McGraw-Hill, New York (1966).

    Google Scholar 

  3. D.M. Quinn: Chem. Rev. 87, 955 (1987).

    Article  CAS  Google Scholar 

  4. M.Bazelyansky, C. Robey, and J. F. Kirsch: Biochemistry 25, 125 (1986).

    Article  PubMed  CAS  Google Scholar 

  5. D.Nachmansohn and I. B. Wilson: Adv. Enzymol. 12, 259 (1951).

    CAS  Google Scholar 

  6. P.Taylor and S. Lappi: Biochemistry 14, 1989 (1975).

    Article  PubMed  CAS  Google Scholar 

  7. J. L. Sussman, M.Harel, F. Frolow, C. Oefner, A. Goldman, L. Toker, and I. Silman: Science 253,872 (1991).

    Article  PubMed  CAS  Google Scholar 

  8. T.A. Steitz and R. G. Shulman: Ann. Rev. Biophys. Bioeng. 11, 419 (1982).

    Article  CAS  Google Scholar 

  9. M. K. Gentry andB. P. Doctor: ‘Alignment of Amino Acid Sequences of Acetylcholinesterases andButyrylcholinesterases’, in J. Massoulié, F. Bacou, E. Barnard, A. Chatonnet,B.P. Doctor and D. M. Quinn, Eds., Cholinesterases: Structure, Function,Mechanism, Genetics and Cell Biology, American Chemical Society,Washington, DC, 394 (1991).

    Google Scholar 

  10. P.H. Axelsen, M. Harel, I. Silman, and J. L. Sussman: Prot. Sci. 3, 188 (1994).

    Article  CAS  Google Scholar 

  11. M. Harel, J. L.Sussman, E. Krejci, S. Bon, P. Chanal, J. Massoulié, and I. Silman: Proc.Natl. Acad. Sci. USA 89, 10827 (1992).

    Article  PubMed  CAS  Google Scholar 

  12. C. Weise, H.-J. Kreienkamp,R. Raba, A. Pedak, A. Aaviksaar, and F. Hucho: EMBO J. 9, 3885 (1990).

    PubMed  CAS  Google Scholar 

  13. I. Schalk, L.Ehret-Sabatier, F. Bouet, M. Goeldner, and C. Hirth: ’Structural Analysis ofAcetylcholinesterase Ammonium Binding Sites’, in A. Shafferman and B. Velan,Eds., Multidisciplinary Approaches to Cholinesterase Functions, PlenumPress, New York, p. 117 (1992).

    Chapter  Google Scholar 

  14. M. Harel, I. Schalk, L.Ehret-Sabatier, F. Bouet, M. Goeldner, C. Hirth, P. Axelsen, I. Silman, and J.L. Sussman: Proc. Natl. Acad. Sci. USA 90, 9031 (1993).

    Article  PubMed  CAS  Google Scholar 

  15. A.Shafferman, B. Velan, A. Ordentlich, C. Kronman, H. Grosfeld,M. Leitner, Y. Flashner,S.Cohen, D. Barak, and N. Ariel: ’Acetylcholinesterase Catalysis -ProteinEngineering Studies’, in A. Shafferman and B. Velan, Eds., MultidisciplinaryApproaches to Cholinesterase Functions, Plenum Press, New York, p. 165(1992).

    Chapter  Google Scholar 

  16. A. Ordentlich,D.Barak, C. Kronman, Y. Flashner, M. Leitner, Y. Segall, N. Ariel, S.Cohen,B. Velan, and A. Shafferman: J.Biol. Chem. 268, 17083 (1993).

    PubMed  CAS  Google Scholar 

  17. D. C. Vellom, Z.Radic, Y. Li, N. A. Pickering, S. Camp, and P. Taylor: Biochemistry 32,12 (1993).

    Article  PubMed  CAS  Google Scholar 

  18. Z. Radic, N. A.Pickering, D. C. Vellom, S. Camp, and P. Taylor: Biochemistry 32, 12074(1993).

    Article  PubMed  CAS  Google Scholar 

  19. H.-J. Nolte, T.L. Rosenberry, and E. Neumann: Biochemistry 19, 3705 (1980).

    Article  PubMed  CAS  Google Scholar 

  20. D. A. Doughertyand D. A. Stauffer: Science 250, 1558 (1990).

    Article  PubMed  CAS  Google Scholar 

  21. I. B. Wilson andC. Quan: Arch. Biochem. Biophys. 73, 131 (1958).

    Article  PubMed  CAS  Google Scholar 

  22. F. Hobbiger: Brit.J. Pharmacol. 7, 223 (1952).

    PubMed  CAS  Google Scholar 

  23. P. Taylor:’Anticholinesterase Agents’, in A. G. Gilman, A. S. Nies, T. W. Rall, andP. Taylor, Eds., The Pharmacological Basis of Therapeutics. 5th edition, MacMillan,New York, 131 (1990).

    Google Scholar 

  24. R. Wolfenden:Ann.Rev. Biophys. Bioeng. 5,271 (1976).

    Article  CAS  Google Scholar 

  25. A. Dafforn, M.Anderson, D. Ash, J. Campagna, E. Daniel, R. Horwood, P. Kerr, G. Rych, and F.Zappitelli: Biochim. Biophys. Acta 484, 375 (1977).

    Article  PubMed  CAS  Google Scholar 

  26. M. H. Gelb, J. P. Svaren, andR. H. Abeles: Biochemistry 24, 1813 (1985).

    Article  PubMed  CAS  Google Scholar 

  27. U. Brodbeck,K.Schweikert, R. Gentinetta, and M. Rottenberg: Biochim. Biophys.Acta 567,357(1979).

    Article  PubMed  CAS  Google Scholar 

  28. H. K. Nair, K.Lee, and D. M. Quinn: J. Am. Chem. Soc. 115, 9939 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Sussman, J.L., Harel, M., Raves, M., Quinn, D., Silman, I. (1995). 3-D Structure of Acetylcholinesterase and Its Complexes with Anticholinesterase Agents. In: Pullman, A., Jortner, J., Pullman, B. (eds) Modelling of Biomolecular Structures and Mechanisms. The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0497-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0497-5_34

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4222-2

  • Online ISBN: 978-94-011-0497-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics