Skip to main content

Binding Sites of Acetylcholine in the Aromatic Gorge Leading to the Active Site of Acetylcholinesterase

  • Conference paper

Part of the book series: The Jerusalem Symposia on Quantum Chemistry and Biochemistry ((JSQC,volume 27))

Abstract

Theoretical calculations performed on the interactions of acetylcholine with the ‘aromatic gorge’ of acetylcholinesterase indicate the existence of a number of local minima for the substrate. These minima are clustered in four regions of increasing interactions from top to bottom of the gorge, culminating in the region of the ‘active site’. The results allow the delineation of the role of the different aminoacids lining the walls, emphasizing, in particular, that of Trp 279 and Trp 84 while smaller interactions involve tyrosines 70, 121, 130, 334 and Phe 330. The influence of D72 is stressed, as well as the orientating role of A 201 and the strong driving influence of E199.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. M. Quinn: Chem. Rev. 87, 955–979 (1987).

    Article  CAS  Google Scholar 

  2. I. B. Wilson and F. Bergmann: J. Biol. Chem. 185, 479–489 (1950).

    PubMed  CAS  Google Scholar 

  3. I. B. Wilson, F. Bergmann, and D. Nachmanson: J. Biol. Chem. 186, 683–692 (1950).

    PubMed  CAS  Google Scholar 

  4. H. C. Froede and I. B. Wilson: J. Biol. Chem. 259, 11010–11013 (1984).

    PubMed  CAS  Google Scholar 

  5. K. McPhee-Quigley, P. Taylor, and S. Taylor: J. Biol. Chem. 260, 12185–12189 (1985).

    Google Scholar 

  6. G. Gibney, S. Camp, M. Dionne, K. McPhee-Quigley, and P. Taylor: Proc. Natl. Acad. Sci. USA 87, 7546–7550 (1990).

    Article  PubMed  CAS  Google Scholar 

  7. J. L. Sussman, M. Harel, F. Frolow, C. Oefner, A. Goldman, L. Toker, and I. Silman: Science 253, 872–879 (1991).

    Article  PubMed  CAS  Google Scholar 

  8. H. Noble, T. L. Rosenberry, and E. Neumann: Biochemistry 19, 3705–3711 (1980).

    Article  Google Scholar 

  9. S. G. Cohen, H. Salih, M. Solomon, S. Howard, S.B. Christi, and J.B. Cohen: Biochim. Biophysica Acta 997, 167–175 (1989).

    Article  CAS  Google Scholar 

  10. C. Weise, H. J. Kreienkamp, R. Raba, A. Pedak, A. Aaviksaar, and F. Hucho: Embo J. 9, 3885–3888 (1990).

    PubMed  CAS  Google Scholar 

  11. J. L. Sussman and I. Silman: Current Opinions in Structural Biology 2 ,721–729 (1992).

    Article  CAS  Google Scholar 

  12. J. L. Sussman, M. Harel, and I. Silman: in A. Pullman et al. (Ed.), Membrane Proteins, Structures, Interactions and Models ,Kluwer Academic Publishers, Dordrecht pp. 161–175 (1992).

    Chapter  Google Scholar 

  13. D. A. Dougherty and D. A. Stauffer: Science 250, 1558–1560 (1990).

    Article  PubMed  CAS  Google Scholar 

  14. M. Dhaenens, L. Lacombe, J. M. Lehn, and J. P. Vigneron: J. Chem Soc. Chem. Commun. 1097–1099 (1984).

    Google Scholar 

  15. F. B. Hasan, S. G. Cohen, and J. B. Cohen: J. Biol. Chem. 255, 3898–3904 (1980).

    PubMed  CAS  Google Scholar 

  16. J. L. Galzi, F. Revah, A. Bessis, and J. P. Changeux: Ann. Rev. Pharmacology 31, 37–72 (1991).

    Article  CAS  Google Scholar 

  17. Y. G. Satow, H. Cohen, E. A. Padlan, and D. R. Davies: J. Mol. Biol. 190, 593–604 (1986).

    Article  PubMed  CAS  Google Scholar 

  18. G. F. Tomaselli, J. T. McLaughlin, M. E. Jurman, E. Hawrot, and G. Yellen: Biophys. J. 60, 721–727 (1991).

    Article  PubMed  CAS  Google Scholar 

  19. S. Pierce, P. Preston-Hurlburt, and E. Hawrot: Proc. R. Soc. Lond. Biol. 241, 207–213 (1990).

    Article  Google Scholar 

  20. J. L. Galzi, D. Bertrand, A. Devillers-Thiery, F. Revah, S. Bertrand, and J. P. Changeux: FEBS Lett. 294, 198–202 (1991).

    Article  PubMed  CAS  Google Scholar 

  21. R. McKinnon: Curr. Opin. Neurobiol. 1, 14–19 (1991).

    Article  Google Scholar 

  22. M. L. Verdank, G. J. Boks, H. Kooijman, J. A. Kanlersand, and J. Kroon: Computer-Aided Molecular Design 7, 173–182 (1993).

    Article  Google Scholar 

  23. A. Pullman and X. W. Hui: in A. Pullman et al. (Ed.), Membrane Proteins. Structures. Interactions and Models ,Kluwer Academic Publishers, Dordrecht, pp. 229–232 (1992).

    Chapter  Google Scholar 

  24. M. Harel, I. Schalk, L. Ehret-Sabatier, F. Bouet, M. Goeldner, C. Hirth, P. Axelsen, I. Silman, and J.L. Sussman: Proc. Natl. Acad. Sci. USA 90, 9031–9035 (1993).

    Article  PubMed  CAS  Google Scholar 

  25. M. Harel, J. L. Sussman, E. Krejci, S. Bon, P. Chanal, J. Massoulié, and I. Silman: Proc. Natl. Acad. Sci. USA 89, 10827–10831 (1992).

    Article  PubMed  CAS  Google Scholar 

  26. Polypep ,C. Etchebest and R. Lavery: Laboratoire de Biochimie Théorique du CNRS. Institut de Biologie Physico-Chimique, Paris, France (1989)

    Google Scholar 

  27. R. Lavery: Manual to Ligand ,Laboratoire de Biochimie Théorique du CNRS, Institut de Biologie Physico-Chimique, Paris, France (1990).

    Google Scholar 

  28. R. Lavery, H. Sklenar, K. Zakrzewska, and B. Pullman: J. Biomol. Struct. Dynam. 3, 989–1014 (1986).

    Article  CAS  Google Scholar 

  29. R. Lavery, I. Parker, and J. Kendrick: J. Biomol. Struct. Dynam. 4, 443–461 (1986).

    Article  CAS  Google Scholar 

  30. B. Hingerty, R. H. Richie, T. L. Ferrel, and J. E. Turner: Biopolymers 24, 427–439 (1985).

    Article  CAS  Google Scholar 

  31. B. Hartmann, B. Malfoy, and R. Lavery: J. Mol. Biol. 207, 433–444 (1985).

    Article  Google Scholar 

  32. R. Lavery and K. Zakrzewska: in D. Beveridge, and R. Lavery (Eds.) Theoretical Chemistry and Molecular Biophysics. Vol. 1 DNA ,Adenine Press, pp. 173–190 (1990).

    Google Scholar 

  33. A preliminary summary of some of the results of this study was given in A. Pullman and X. Hui: Biophysical J. 66, (2, part 2) A 345 (1994).

    Article  Google Scholar 

  34. Z. Radic, E. Reiner, and P. Taylor: Molecular Pharmacology 39, 98–104 (1991).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Pullman, A. (1995). Binding Sites of Acetylcholine in the Aromatic Gorge Leading to the Active Site of Acetylcholinesterase. In: Pullman, A., Jortner, J., Pullman, B. (eds) Modelling of Biomolecular Structures and Mechanisms. The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0497-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0497-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4222-2

  • Online ISBN: 978-94-011-0497-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics