Skip to main content

Rotational Motions of Bases in DNA

  • Conference paper
Modelling of Biomolecular Structures and Mechanisms

Part of the book series: The Jerusalem Symposia on Quantum Chemistry and Biochemistry ((JSQC,volume 27))

  • 76 Accesses

Abstract

Two different kinds of dynamics simulation have been performed to investigate the rotation of the bases in DNA. A Brownian dynamics simulation using data from fluorescence experiments establishes a link between the rotation observed at the nanosecond time scale and the base pair opening reaction which is a process detected at the millisecond time scale. A 200 ps molecular dynamics simulation of an octanucleotide shows that rotational motions with frequencies lower than 1 ps-1 and characterized by a relaxation time of 17 ps are responsible for the fluorescence anisotropy decay observed in the supra nanosecond time domain. They correspond to collective motions of groups of atoms. Both simulations show that a continuity of the base rotation exists from ps to ms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Z. Chen, W. Zhuang, and E. W. Prohofsky: J. Molec. Struct. Dynam. 10, 415 (1992).

    Article  CAS  Google Scholar 

  2. J. G. Moe and I. M. Russu: Biochemistry 31, 8421 (1992).

    Article  PubMed  CAS  Google Scholar 

  3. M. Gueron, M. Kochoyan, and J. L. Leroy: Nature 382, 89 (1987).

    Article  Google Scholar 

  4. D. Genest and P. Wahl: Biochim. Biophys. Acta 52, 502 (1978).

    Google Scholar 

  5. J. Thomas, S. Allison, C. Appeleof, and M. Schurr: Biophys. Chem. 12, 177 (1980).

    Article  PubMed  CAS  Google Scholar 

  6. D. Genest, P. Wahl, M. Erard, M. Champagne, and M. Daune: Biochimie 64, 419 (1982).

    Article  PubMed  CAS  Google Scholar 

  7. M. Collini, G. Chirico, and G. Baldini: Biopolymers 32, 3447 (1992).

    Article  Google Scholar 

  8. D. L. Ermack and J. A. McCammon: J. Chem. Phys. 69, 1352 (1978).

    Article  Google Scholar 

  9. J. Ramstein and R. Lavery: Proc. Natl. Acad. Sci. USA 85, 7231 (1988).

    Article  PubMed  CAS  Google Scholar 

  10. F. Briki, J. Ramstein, R. Lavery, and D. Genest: J. Am. Chem. Soc. 113, 2490 (1991).

    Article  CAS  Google Scholar 

  11. F. Briki and D. Genest: J. Molec. Struct. Dynam. 11, 43 (1993).

    Article  CAS  Google Scholar 

  12. F. Briki and D. Genest: J. Molec. Struct. Dynam. in press.

    Google Scholar 

  13. J. L. Leroy: Regard sur la Biochimie 5, 57 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Briki, F., Ramstein, J., Lavery, R., Genest, D. (1995). Rotational Motions of Bases in DNA. In: Pullman, A., Jortner, J., Pullman, B. (eds) Modelling of Biomolecular Structures and Mechanisms. The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0497-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0497-5_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4222-2

  • Online ISBN: 978-94-011-0497-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics