Skip to main content

Abstract

Proteins frequently adopt similar three-dimensional folds even if there is no detectable homology on the sequence level. Therefore, it is likely that a substantial fraction of known sequences will have native folds which resemble some known structure. The task of fold recognition is to identify such coincidences, thereby predicting the unknown folds of known amino acid sequences. We present the principles of a fold recognition technique based on mean force potentials and apply the procedure in two case studies, demonstrating that the method is able to recognize native-like sequence structure pairs in cases where no significant sequence homology is detectable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Novotny, R. Bruccoleri and M. Karplus: J. Mol. Biol. 177 ,787 (1984)

    Article  PubMed  CAS  Google Scholar 

  2. M. J. Sippl: Proteins 7, 355 (1993a).

    Article  Google Scholar 

  3. S. J. Wodak and M. J. Rooman: Curr. Opp. Struct. Biol. 3, 247 (1993)

    Article  CAS  Google Scholar 

  4. J. U. Bowie and D. Eisenberg: Curr. Opp. Struct. Biol. 3, 437 (1993)

    Article  CAS  Google Scholar 

  5. M. J. Sippl: J. Comput. Aided. Mol. Design 473 ,(1993b)

    Google Scholar 

  6. J. S. Fetrow and S. H. Bryant: Biotechnology 11, 479 (1993)

    Article  PubMed  CAS  Google Scholar 

  7. R. Luthy, J. U. Bowie and D. Eisenberg: Nature 356, 83 (1992).

    Article  PubMed  CAS  Google Scholar 

  8. K. E. Drexier: Proc. Natl. Acad. Sci. USA 78, 5275 (1981).

    Article  Google Scholar 

  9. J. W.Ponder and F. M. Richards: J. Mol. Biol. 193, 775 (1987).

    Article  PubMed  CAS  Google Scholar 

  10. J. U. Bowie, R. Liithy and D. Eisenberg: Science 253, 164 (1991).

    Article  PubMed  CAS  Google Scholar 

  11. M. J. Sippl, H. Flockner and S. Weitckus: ‘In search of protein folds’, in K. Merz and S. LeGrand, Eds. The Protein Folding Problem and Tertiary Structure Prediction ,Birkhäuser, Boston, in press (1994a).

    Google Scholar 

  12. M. J. Sippl: J. Mol. Biol. 213, 859 (1990).

    Article  PubMed  CAS  Google Scholar 

  13. M. Hendlich, P. Lackner, S. Weitckus, H. Flöckner, R. Froschauer, K. Gottsbacher, G. Casari, and M. J. Sippl: J. Mol. Biol. 216, 167 (1990).

    Article  PubMed  CAS  Google Scholar 

  14. M. J. Sippl, M. Jaritz, M. Hendlich, M. Ortner and P. Lackner: ‘Applications of knowledge based mean fields in the determination of protein structures’, in S. Doniach, Eds., Statistical Mechanics, Protein Structure and Protein-substrate Interactions ,Plenum Publishers, in press (1994b).

    Google Scholar 

  15. M. J. Sippl and M. Jaritz: ‘Predictive power of mean force pair potentials’, in H. Bohr and S. Brunak, Eds., Protein Structure by Distance Analysis ,IOS Press, Amsterdam, pp. 113–134 (1994).

    Google Scholar 

  16. D. T. Jones, W. R. Taylor, and J. M. Thornton: Nature 358, 86 (1992).

    Article  PubMed  CAS  Google Scholar 

  17. S. B. Needleman and C. D. Wunsch: J. Mol. Biol. 48, 443 (1970).

    Article  PubMed  CAS  Google Scholar 

  18. J. Kim and D. C. Rees: Science 257, 1677 (1992a).

    Article  PubMed  CAS  Google Scholar 

  19. I. Schlichting, S. C. Almo, G. Rapp, K. Wilson, K. Petratos, A. Lentfer, A. Wittinghofer, W. Kabsch, E .F. Pai, G. A. Petsko, and R. S. Goody: Nature 345, 309 (1990).

    Article  PubMed  CAS  Google Scholar 

  20. H. R. Bourne, D. A. Sanders, and F. McCormick: Nature 349, 117 (1991).

    Article  PubMed  CAS  Google Scholar 

  21. J. Ahnn, P. E. March, H. E. Takiff, and M. Inouye: Proc. Natl. Acad. Sci. USA 83, 8849 ((1986).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Sippl, M.J., Weitckus, S., Flöckner, H. (1995). Fold Recognition. In: Pullman, A., Jortner, J., Pullman, B. (eds) Modelling of Biomolecular Structures and Mechanisms. The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0497-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0497-5_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4222-2

  • Online ISBN: 978-94-011-0497-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics