Skip to main content

Somatic embryogenesis in horse chestnut (Aesculus hippocastanum L.)

  • Chapter
Somatic Embryogenesis in Woody Plants

Part of the book series: Forestry Sciences ((FOSC,volume 44-46))

Abstract

Horse chestnut (A. hippocastanum L., 2n = 40) forest tree belongs to the genus Aesculus and family Hippocastanaceae. It can grow as a solitary tree, attains a height up to 25 m, and the diameter of the trunk can reach up to 1m (Fig. 1). According to Tutin et al. (1968) its main morphological characteristics are as follows: the trunk is covered with thin, dark brown, smooth bark which becomes darker and regularly fissured into rectangular scales during ageing. Young twigs are thick, brownish and slender with ovoid leaf scars. The buds are large and glabrous, covered with numerous viscid scales (Fig. 3a). Cylindrical panicles (15–30cm long) develop from 2.5 cm long apical buds. The large, dark-green leaves are palmate, with 5–7 cm long leaflets which are obovate, cuneate, usually irregularly accumulated, crenateserrate,

Aesculus hipocastanum L. growing in “Jevremovac” Botanical Garden, Belgrade. The tree is 100 years old and 30 m high (Photo M. Radojevic, March, 1993).

Ripe horse chestnut seeds.

glabrous and tomentose above, and glabrous beneath (Fig. 3b,b1). Zygomorphic bisexual flowers on large, terminal, erect panicles appear from April till May. The calyx encloses five white-yellow petals (size up to 1 cm) with a pink spot at the base (Fig. 3c,C1). Orange-yellow, hairy stamens surround the style. The ovary is superior, consisting of three fused carpels and three locules (seldom two or one by abortion), each locule containing two ovules (Fig. 3d). Some flowers of the inflorescence are sterile, i.e., only the flowers situated near the base get pollinated to develop green, and spiny burs (Fig. 3e).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aboud-Zeid, A. and K.H. Neumann, 1973. Preliminary investigations on the influence of cotyledons on the development of cherry embryos (Prunus avium L.) Z. Pflanzenphysiol. 69: 299–305.

    Google Scholar 

  • Ammirato, P.V., 1983. Embryogenesis. In: D.A. Evans, W.R. Sharp, P.V. Ammirato and Y. Yamada (Eds.), Handbook of Plant Cell Culture, Vol. I, pp. 82–123. McMillan, New York.

    Google Scholar 

  • Ammirato, P.V., 1986. Control and expression of morphogenesis in culture. In: L.A. Withers and P.G. Alderson (Eds.), Plant Tissue Culture and its Agricultural Applications, pp. 23–45. Butter-Worths, London.

    Google Scholar 

  • Ammirato, P.V., 1987. Organizational events during somatic embryogenesis. In: Green, C.E., Sommers, D.A., W.P. Hackett and D.D. Biedboer (Eds.), Plant Tissue and Cell Culture, Plant Biol. 3, pp. 57–81. Alan R. Liss., Inc. New York.

    Google Scholar 

  • Attree, S.M., Moore, D., V.K. Sawhney and C. Fowke, 1991. Enhanced maturation and desiccation tolerance of white spruce (Picea glauca Moench) somatic embryos: Effects of a non-plasmolysing water stress and abscisic acid. Ann. Bot. 68: 519–525.

    Google Scholar 

  • Bajaj, Y.P.S., 1986. Biotechnology of tree improvement for rapid propagation and biomass energy production. In: Y.P.S. Bajaj (Ed.), Biotechnology in Agriculture and Forestry, Vol. 1. Tree I, pp. 1–23. Springer-Verlag, Berlin/Heidelberg/New York.

    Google Scholar 

  • Barratt, D.H., Whitford, P.N., Cook, S.K., G. Butcher and T.L. Wang, 1989. Analysis of seed development in Pisum sativum L. VIII. Does abscisic acid prevent precoccious germination and control storage protein syntesis? J. Exp. Bot. 40: 1009–1014.

    Article  CAS  Google Scholar 

  • Bertossi, F., 1960. Ritmo autonomo di crescita del tessuto dilimone coltivato in vitro. Atti. Ist. Bot. Crittog. Univ. Pavia ser. V, 17: 210–221.

    Google Scholar 

  • Bewley, J.D. and M. Black, 1982. Viability and Longevity. Springer-Verlag, Berlin/Heidelberg/-New York.

    Google Scholar 

  • Bradbeer, J.W. and N.J. Pinifield, 1967. Studies in seed dormancy. III. The effects of the gibberellin on dormant seeds of Corylus avellana. New Phytol. 66: 515–523.

    Article  CAS  Google Scholar 

  • Buitelaar, R.M. and I. Tramper, 1992. Strategies to improve the production of secondary metabolites with plant cell cultures: a literature review. J. Biotechnol. 23: 111–141.

    Article  CAS  Google Scholar 

  • Chalupa, V., 1990. Plant regeneration by somatic embryogenesis from cultured immature embryo of oak (Quercus robur L.) and linden (Tilliacor data Mill.). Plant Cell Rep. 9: 398–401.

    Article  CAS  Google Scholar 

  • Cheliak, W.C. and D.L. Rogers, 1990. Integrating biotechnology into tree improvement programs. Can. J. For. Res. 20: 452–463.

    Article  Google Scholar 

  • Cruz, G.S., J.M. Canhoto and M.A.V. Abreu, 1990. Somatic embryogenesis and plant regeneration from zygotic embryos of Feijoa sellowiana Berg. Plant Sci. 66: 263–270.

    Article  CAS  Google Scholar 

  • Cutler, H.G., 1988. Unusual plant-growth regulators from microorganisms. CRC Crit. Rev. Plant Sci. 6: 323–343.

    Article  CAS  Google Scholar 

  • Dameri, R.M., Caffaro, L., P. Gastaldo and P. Profumo, 1986. Callus formation and embryogenesis with leaf explants of Aesculus hippocastanwn L. J. Plant Physiol. 126: 93–96.

    Article  CAS  Google Scholar 

  • Dandekar, A.M., Gupta, P.K., D.J. Durzan and V. Knauf, 1987. Transformation and foreign gene expression in micropropagated douglas-fir (Pseudotsuga menziesii). Bio/Technol. 5: 587–588.

    Article  CAS  Google Scholar 

  • Darlington, C.D. and A.P. Wylie, 1955. In: Allen and Unwin Ltd. (Ed.), Chromosome Atlas of Flowering Plants 2., p. 197, London.

    Google Scholar 

  • Deng, M.-D. and D. Cornu, 1992. Maturation and germination of walnut somatic embryos. Plant Cell Tiss. Org. Cult. 28: 195–202.

    Article  Google Scholar 

  • Deno, H., Suga, C., T. Morimoto and Y. Fujita, 1987. Production of shikonin derivatives by cell suspension cultures of Lithospermum erythrorhizon. IV. Production of shikonin derivatives by a two-layer culture containing an organic solvent. Plant Cell Rep. 6: 197–199.

    Article  CAS  Google Scholar 

  • Domagalski, W., A. Schulze and R.S. Bandurski, 1987. Isolation and characterization of esters of indole-3-acetic acid from the liquid endosperm of the horse chestnut (Aesculus species). Plant Physiol. 84: 1107–1113.

    Article  PubMed  CAS  Google Scholar 

  • Dunstan, D.I., T.D. Bethune and S.R. Abrams, 1991. Recemic abscisic acid and abscisyl alcohol promote maturation of white spruce (Picea glauca) somatic embryos. Plant Sci. 76: 219–228.

    Article  CAS  Google Scholar 

  • Durham, R.E. and W.A. Parrott, 1992. Repetitive somatic embryogenesis from peanut cultures in liquid medium. Plant Cell Rep. 12: 12–25.

    Google Scholar 

  • El Maâtaoui, M., H. Espagnac and N. Michaux-Ferrière, 1990. Hystology of callogenesis and somatic embryogenesis induced in stem fragments of cork oak (Quercus suber) cultured in vitro. Ann. Bot. 66: 183–190.

    Google Scholar 

  • Em, H. 1959. Za diviot ili konjski kosten vo N.R. Makedonija. Godisen zbornik na Zemjodel-sko-šumarski fakultet. Skoplje, Knjiga XII.

    Google Scholar 

  • Evans, D.A., W.R. Sharp and J.E. Bravo, 1984. Cell culture methods for crop improvement. In: W.R. Sharp, D.A. Evans, P.V. Ammirato and Y. Yamada (Eds.), Handbook of Plant Cell Culture, Vol. 2, pp. 47–68, Collier Macmillan Publishers, London.

    Google Scholar 

  • Feirer, T.P., J.H. Conkey and S.A. Verhagen, 1989. Triglycerides in embryogenic conifer calli: a comparison with zygotic embryos. Plant Cell Rep. 8: 207–209.

    Article  CAS  Google Scholar 

  • Frischknecht, P.M., T.W. Baumann and H. Wanner, 1977. Tissue culture of Coffea arabica (Coffee). Growth and caffein formation. Planta Med. 31: 344–350.

    Article  CAS  Google Scholar 

  • Gautheret, R.J., 1959. Mileux de culture. In: R.J. Gautheret (Ed.), La Culture des Tissus Végétaux, pp. 11–34. Masson et Cie Ed., Paris.

    Google Scholar 

  • Ghazi, T.O., H.V. Cheema and M.W. Nabors, 1986. Somatic embryogenesis and plant regeneration from embryogenic callus of soybean, Glycine max L. Plant Cell Rep. 5: 452–456.

    Article  CAS  Google Scholar 

  • Gray, D.J., 1992. Somatic embryogenesis and plant regeneration from immature zygotic embryos of muscadine grape (Vitis rotundifolia) cultivars. Amer. J. Bot. 79: 542–546.

    Article  Google Scholar 

  • Gunn, R.E. and P.R. Day, 1986. In vitro culture in plant breeding. In: L.A. Winthers and P.G. Alderson (Eds.), Plant Tissue Culture and its Agricultural Applications, pp. 313–336. Butterworths, London.

    Google Scholar 

  • Harley, J.L., 1959. The Biology of Mycorrhiza. Interscience Publishers, Inc., New York.

    Google Scholar 

  • Hartmann, H.T. and D.E. Kester, 1965. Propagazione delle piante. Edagricole, Bologna, 3: 1–5.

    Google Scholar 

  • Hasnain, S. and W. Chellak, 1986. Scientific and technical articles/Articles scientifiques et techniques. In: S. Hasnain (Ed.), Tissue Culture in Forestry: Economic and Genetic Potential, The Forestry Chronicle, pp. 219–225, Ottawa, Canada.

    Google Scholar 

  • Hasnain, S., R. Pigeon and R.P. Overend, 1989. Economic analysis of the use tissue culture for rapid forest improvement. In: S. Hasnain (Ed.), Tissue Culture in Forestry: Economic and Genetic Potential, The Forestry Chronicle, pp. 240–245, Ottawa, Canada.

    Google Scholar 

  • James, J.D., A.J. Passey and D.C. Deeming, 1984. Adventitious embryogenesis and the in vitro culture of apple seeds parts. Int. J. Plant Physiol. 115: 217–229.

    Article  CAS  Google Scholar 

  • James, J.D., 1987. Cell and tissue culture technology for genetic manipulation of temperate fruit trees. Biotechnol. Genetic Eng. Rev. 5: 33–490.

    Google Scholar 

  • Jordan, M., 1986. Somatic embryogenesis from cell suspension cultures in Cariaca candamarcensis. Plant Cell Tiss. Org. Cult. 7: 257–261.

    Article  CAS  Google Scholar 

  • Jörgensen, J., 1989. Somatic embryogenesis in Aesculus hippocastanwn L. J. Plant Physiol. 135: 240–241.

    Article  Google Scholar 

  • Jörgensen, J., 1990. Conservation of valuable gene resources by cryopreservation in some forest tree species. J. Plant Physiol. 136: 373–376.

    Article  Google Scholar 

  • Jörgensen, J., 1991a. Somatic embryogenesis in Aesculus hippocastanum and Quercus petraea from old trees (10 to 140 years). In: M.R. Ahuja (Ed.), Woody Plant Biotechnology, pp. 351–352. Plenum Press, New York.

    Chapter  Google Scholar 

  • Jörgensen, J., 1991b. Androgenesis in Quercus petraea, Fagus sylvatica and Aesculus hippocastanum. In: M.A. Ahuja (Ed.), Woody Plant Biotechnology, pp. 353–354. Plenum Press, New York.

    Chapter  Google Scholar 

  • Jörgensen, J., 1991c. Cryopreservation of haploid embryos of Quercus petraea, Fagus sylvatica and somatic embryos of Aesculus hippocastanum. In: M.R. Ahuja (Ed.), Woody Plant Biotechnology, pp. 355–356. Plenum Press, New York.

    Chapter  Google Scholar 

  • Kavathekar, A.K., P.S. Ganapathy and B.M. Johri, 1977. Chilling induces development of embryoids into plantlets in Eschscholtzia. Z. Pflanzenphysiol. 81: 358–363.

    Google Scholar 

  • Kermode, A.R., 1990. Regulatory mechanisms involved in the transition from seed development to germination. CRC Crit. Rev. Plant Sci. 9: 155–195.

    Article  CAS  Google Scholar 

  • Kononowicz, H., A.K. Kononowicz and J. Janick, 1978. Asexual Embryogenesis via callus of Theobroma cacao L. Z. Pflanzenphysiol. 113: 347–358.

    Google Scholar 

  • Košanin, N., 1926. Verbreitung einiger Baum-und Strauch-Arten in Südenserbien. Z. “Ungarische Botanische Blätter” 1/12: 116–123.

    Google Scholar 

  • Kubo, I., A. Matsumoto, M. Tanguchi and W.F. Wood, 1985. Combined effect on plant growth of (-)-epicatechin and hidroquinone, compounds from Aesculus californica Nutt. (Hippocastanaceae). Chem. Pharm. Bull. 33(9): 3826–3828.

    Article  CAS  Google Scholar 

  • Lazzeri, P.A., D.F. Hildebrand and G.B. Coolins, 1987. Soybean somatic embryogenesis: effects of hormones and culture manipulations. Plant Cell Tiss. Org. Cult. 10: 197–207.

    Article  CAS  Google Scholar 

  • Lloyd, G. and B.H. McCown, 1981. Commercially-feasible micropropagation of mountain lawrel (Kalmia latifolia) by use of shoot-tip culture. Proc. Int. Plant. Prop. Soc. 30: 421–427.

    Google Scholar 

  • List, A.J.R. and F.C. Steward, 1965. The nucellus, embryo sac, endosperm and embryo of Aesculus and their interdependence during growth. Ann. Bot. 29: 1–17.

    Google Scholar 

  • Liu, W., P.J. Moore and G.B. Collins, 1992. Somatic embryogenesis in soybean via somatic embryo cycling. In Vitro Cell Dev. Biol. 28: 153–160.

    Article  Google Scholar 

  • Mackay, J., A. Sequin and M. Lalonde, 1988. Genetic transformation of 9 in vitro clones of Alnus and Betula by Agrobacterium tumefaciens. Plant Cell Rep. 7: 229–232.

    Article  CAS  Google Scholar 

  • McGranaham, G.H., C.A. Leslie, S.L. Uratsu, L.A. Martin and A.M. Dandekar, 1988. Agroba-eterium-mediated transformation of walnut somatic embryos and regeneration of transgenic plants. Bio/Technol. 6: 800–804.

    Article  Google Scholar 

  • Maheswaran, G. and E.G. Williams, 1986. Direct secondary somatic embryogenesis from immature sexual embryos of Trifolium repens cultured in vitro. Ann. Bot. 57: 109–117.

    Google Scholar 

  • Marinković, N. and Lj. Radojević, 1992. The influence of bud length, age of the tree and culture media on androgenesis induction in Aesculus carnea Hayne anther culture. Plant Cell Tiss. Org. Cult. 31: 51–59.

    Google Scholar 

  • Markgraf, F., 1932. Pflanzengeographie von Albanien ihre bedentung für Vegetation und Flora der Mitteleneerländer. In: L. Diels (Ed.), Biblioteca Botanica (Original-Abhandlungen aus dem Gesamtgebiete der Botanik), Heft 105, p. 110. (Erwin Nägele), G.M.B.H., Stuttdgart.

    Google Scholar 

  • Marx, D.H., 1969. The influence of ectotrophic mycorrhizal fungi on the resistence of Pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to roots pathogenic fungi and soil bacteria. Phytopathol. 59: 153–163.

    Google Scholar 

  • Marx, S., W. Grosse and H.A. Schneider-Poetsch, 1988. A combined HPLC-ELISA assay applied to measure abscisic acid (ABA) and abscisyl-β-D-glucopyranoside in ripening embryos of walnut (Juglans regia L.) J. Plant Physiol. 133: 475–479.

    Article  CAS  Google Scholar 

  • Michler, C.H. and E.O. Bauer, 1991. High frequency somatic embryogenesis from leaf tissue of Populus spp. Plant Sci. 77: 111–118.

    Article  CAS  Google Scholar 

  • Murashige, T and F. Skoog, 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473–497.

    Article  CAS  Google Scholar 

  • Nitsch, J.D., 1956. Methods for the investigation of natural auxins and growth inhibitors. In: R.L. Wain and F.W. Wightman (Eds.), The Chemistry and Mode of Action of Plant Growth Substances, pp. 3–31. Butterworth, London/Acad. Press, New York.

    Google Scholar 

  • Ozias-Akins, P., W.F. Anderson and C.C. Holbrook, 1992. Somatic embryogenesis in Arachis hypogaea L.: genotype comparison. Plant Sci. 83: 103–111.

    Article  Google Scholar 

  • Paupardin, C., 1983. Elaboration of secondary metabolites by tree or shrub tissues culture in vitro. Bull. Soc. Bot. Fr. 130 Actual. Bot. 2: 61–68.

    Google Scholar 

  • Procter, R., 1977. Trees of the World. Hamlyn, London.

    Google Scholar 

  • Profumo, P., R.M. Dameri and C. Orsino, 1976. Frammenti cotiledonari di Aesculus hippocastanum L. coltivati in vitro primi data sul comportamento dell’ amido e dell’ escina. Giorn. Bot. Ital. 110: 155–171.

    Article  Google Scholar 

  • Profumo, P., R.M. Dameri, C. Orsino and P. Modensi, 1980. Aescin content in callus from explants of Aesculus hippocastanum cotyledons grown in vitro. Giorn. Bot. Ital. 114: 25–28.

    Article  CAS  Google Scholar 

  • Profumo, P., P. Gastaldo, R.M. Dameri and L. Caffaro, 1986. Histological study of calli and embryoids from leaf explants of Aesculus hippocastanum L. J. Plant Physiol. 126: 97–103.

    Article  Google Scholar 

  • Profumo, P., P. Gastaldo and M. Martinucci, 1987a. Variation in aescin content in Aesculus hippocatanum seeds during the year. Fitoterapia 58: 184–186.

    CAS  Google Scholar 

  • Profumo, P., P. Gastaldo and N. Rascio, 1987b. Ultrastuctural study of different types of callus from leaf explants of Aesculus hippocastanum L. Protoplasma 138: 89–97.

    Article  Google Scholar 

  • Profumo, P., P. Gastaldo and R.M. Dameri, 1989. Studio preliminare sui rapporti cotiledoniasse embrionale in Aesculus hippocastanum L. Boll. Soc. It. Biol. Sper. 65: 603–608.

    Google Scholar 

  • Profumo, P., P. Gastaldo, A.M. Gaviglia and R.M. Dameri, 1990. Somatic embryogenesis from cotyledonary explants of Aesculus hippocastanum L. Acta Embryol. Exp. 11: 101–106.

    Google Scholar 

  • Profumo, P., P. Gastaldo, A.M. Caviglia and R.M. Dameri, 1991a. Somatic embryogenesis from cotyledonary explants of Aesculus hippocastanum L. Acta Embryol. Sper. 7: 122–126.

    Google Scholar 

  • Profumo, P., A.M. Caviglia and R. Dameri, 1991b. Aescin content in embryogenic callus and in embryoids from leaf explants of Aesculus hippocastanum L. Planta Med. 57: 50–52.

    Article  PubMed  CAS  Google Scholar 

  • Profumo, P., A.M. Caviglia and P. Gastaldo, 1992. Formation of aescin glycosides by callus tissue from cotyledonary explants of Aesculus hippocastanum L. Plant Sci. 85: 161–164.

    Article  CAS  Google Scholar 

  • Radojević, Lj., 1977. Physiological and cytological investigations of embryogenesis in tissue culture of Corylus avellana L., Paulownia tomentosa Steud. and Aesculus hippocastanum L. Ph.D Thesis, Univ. Belgrade, Yugoslavia (in Serbian).

    Google Scholar 

  • Radojević, Lj., 1978. In vitro induction of androgenic plantlets in Aesculus hippocastanum L. Protoplasma 96: 369–374.

    Article  Google Scholar 

  • Radojevic, Lj., 1979. Somatic embryogenesis and plantlets from callus cultures of Paulownia tomentosa Steud. Z. Pflanzenphysiol. 91: 56–62.

    Google Scholar 

  • Radojević, Lj., 1980. Embryogenèse somatique et androgénèse chez certaine espèces ligneuse. Bull. Soc. Bot. Fr. 127, Actuel. Bot. 3/4: 99–107.

    Google Scholar 

  • Radojević, Lj., 1985. Tissue culture of Zea mays “Cudu”. I. Somatic embryogenesis in callus tissue. J. Plant Physiol. 119: 435–441.

    Article  Google Scholar 

  • Radojevic, Lj., 1988. Plant regeneration of Aesculus hippocastanum L. (horse chestnut) through somatic embryogenesis. J. Plant Physiol. 132: 322–326.

    Article  CAS  Google Scholar 

  • Radojević, Lj., 1991. Horse Chestnut (Aesculus spp.). In: Y.P.S. Bajaj (Ed.), Biotechnology in Agriculture and Forestry, Vol. 16. Tree III, pp. 111–141. Springer-Verlag, Berlin/Heidelberg.

    Google Scholar 

  • Radojević, Lj. and A. Kovoor, 1985. Induction of haploids. In: Y.P.S. Bajaj (Ed.), Biotechnology in Agriculture and Forestry, Vol. 1. Tree I, pp. 65–86. Springer-Verlag, Berlin/Heidelberg/New York.

    Google Scholar 

  • Radojević, Lj. and A. Subotić, 1992. Plant regeneration of Iris setosa Pall. through somatic embryogenesis and organogenesis. J. Plant Physiol. 139: 690–696.

    Article  Google Scholar 

  • Radojević, Lj. and N. Marinkovic, 1993. Induction of somatic embryogenesis in immature ovule culture of Aesculus hippocastanum L. Arch. Biol. Sci. 45: 13–14.

    Google Scholar 

  • Radojević, Lj., R. Vujičić and M. Nešković, 1975. Embryogenesis in tissue culture of Corylus avellena L. Z. Pflanzenphysiol. 77: 33–41.

    Google Scholar 

  • Radojević, Lj., P. Druart and P. Boxus, 1987. Vegetative propagation of androgenous embryos of horse chestnut by meristem culture in vitro. Acta Hort. 212: 531–537.

    Google Scholar 

  • Radojević, Lj., N. Djordjević and N. Gogala, 1988. Influence of different factors on somatic and androgenic Aesculus spp. embryos development. 6th Congr. FESPP, Split, Abstr. 1430.

    Google Scholar 

  • Radojević, Lj., N. Djordjević and B. Tucić, 1989. In vitro induction of pollen embryos and plantlets in Aesculus carnea through anther culture. Plant Cell Tiss. Org. Cult. 17: 21–26.

    Google Scholar 

  • Raj Bhansali, R, J.A. Driver, and D.J. Durzan, 1990. Rapid multiplication of adventitious somatic embryos in peach and nectarine by secondary embryogenesis. Plant Cell Rep. 29: 280–284.

    Google Scholar 

  • Rajasekaran, K. and M.G. Mullins, 1979. Embryos and plantlets from cultured anthers of hybrid grapevines. J. Exp. Bot. 30: 399–407.

    Article  Google Scholar 

  • Ranch, J.P., L. Oglesby and A.C. Zielinski, 1985. Plant regeneration from embryo-derived tissue cultures of soybeans. In Vitro 21: 653–658.

    Google Scholar 

  • Rangaswamy, N.S., 1986. Somatic embryogenesis in angiosperm cell, tissue and organe culture. Proc. Indian Acad. Sci. 96: 247–271.

    CAS  Google Scholar 

  • Richardson, I.B.K., 1978. Dicotyledon families. In: V.H. Heywood (Ed.), Flowering Plants of the World, pp. 194–195. Univ. Press, Oxford.

    Google Scholar 

  • Rosendahl, R.O., 1942. The effect of mycorrhizal and non-mycorrhizal fungi on the availability of difficulty soluble potassium and phosphorus soil. Sci. Soc. Amer. Proc. 7: 477–479.

    Article  Google Scholar 

  • Rout, G.R., B.K. Debata and P. Das, 1991. Somatic embryogenesis in callus culture of Rosa hybrida L. ev. Landora. Plant Cell Tiss. Org. Cult. 27: 65–69.

    Article  CAS  Google Scholar 

  • Routien, J.B. and R.F. Dawson, 1943. Some interrelationships of growth, salt absorption, respiration and mycorrhizal development in Pinus echinata. Amer. J. Bot. 30: 440–449.

    Article  CAS  Google Scholar 

  • Sasamoto, H. and Y. Hosoi, 1989. Somatic embryogenesis in suspension cultures of Quercus serrata Thunb. J. Jpn. Soc. 71: 20–22.

    Google Scholar 

  • Sellars, R.M., G.M. Southward and G.C. Phillips, 1990. Adventitious somatic embryogenesis from cultured immature zygotic embryos of peanut and soybean. Crop Sci. 30: 408–414.

    Article  CAS  Google Scholar 

  • Senaratna, T., B.D. McKersie and S.R. Bawley, 1990. Artificial seeds of alfalfa (Medicago sativa L.): induction of desiccation tolerance in somatic embryos. In Vitro Cell Dev. Biol. 26: 85–90.

    Article  Google Scholar 

  • Seymour, A.B., 1929. Host Index of the Fungi of North America. Harvard Univ. Press, Cambridge, Massachusetts.

    Google Scholar 

  • Sommer, H.E. and C.L. Brown, 1979. Application of tissue culture to forest tree improvement. In: Sharp, W.R., Larsen, P.O. and V. Ragavan (Eds.), Cell and Tissue Culture, Principles and Applications, pp. 461–491. Ohio Univ. Press, Columbus, OH.

    Google Scholar 

  • Söndahl, M.R. and W.R. Sharp, 1977. High frequency induction of somatic embryos in cultured leaf explants of Coffea arabica L. Z. Pflanzenphysiol. 81: 395–408.

    Google Scholar 

  • Söndahl, M.R., D.A. Evans and W.R. Sharp, 1980. Coffee cell culture. Growth and somatic embryogenesis. Newslett. Int. Ass. Plant Tissue Culture 30: 2–7.

    Google Scholar 

  • Staritsky, G., 1970. Embryos formation in callus tissues of coffee. Acta Bot. Neerl. 19: 509–514.

    Google Scholar 

  • Stevanović, V. and Lj. Radojević, 1993. Distribution and area under cultivation of Aesculus hippocastanum L. Arch. Biol. Sci. 45: 15–16.

    Google Scholar 

  • Steward, F.C., M.O. Mapes and J. Smith, 1958. Growth and organized development of cultured cells. I. Growth and division of freely suspended cells. Amer. J. Bot. 45: 693–703.

    Article  Google Scholar 

  • Tachtadzhyana, A.L., 1980. Flowering Plants. Prosveshchenie, Moscow (in Russian).

    Google Scholar 

  • Tétu, T., R.S. Sangwan and B.S. Sangwan-Norreel, 1990. Direct somatic embryogenesis and organogenesis in cultured immature zygotic embryos of Pisum sativum L. J. Plant Physiol. 137: 102–109.

    Article  Google Scholar 

  • Thevenot, C. and D. Côme, 1973. Initiation de la germination a l’axe embryonaire par les cotyledons chez le pommier (Prunus malus L.). C.R. Acad. Sci. 277: 1873–1876.

    Google Scholar 

  • Tucović, A., 1973. Fam. Hippocastanaceae. Flora Srbije 5: 103–110.

    Google Scholar 

  • Tulecke, W. and G. H. McGranahan, 1985. Somatic embryogenesis and plant regeneration from cotyledons of walnut (Juglans regia L.). Plant Sci. 40: 57–63.

    Article  Google Scholar 

  • Tulecke, W., G. McGranahan and H. Ahmadi, 1988. Regeneration by somatic embryogenesis of triploid plants from endosperm of walnut (Juglans regia L. cv. Mangerian). Plant Cell Rep. 7: 301–304.

    Article  Google Scholar 

  • Tutin, T.G., V.H. Heywood, N.A. Burges, D.M. Moore, D.H. Valentine, S.M. Walters and D.A. Webb, 1968. Flora Europaea, Rosaceae to Umbellifereae. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Vahala, T., P. Stabel and T. Eriksson, 1989. Genetic transformation of willows (Salix spp) by Agrobacterium tumefaciens. Plant Cell Rep. 8: 55–58.

    Article  CAS  Google Scholar 

  • Vardi, A., S. Bleichman and D. Aviv, 1990. Genetic transformation of Citrus protoplasts and regeneration of transgenic plants. Plant Sci. 69: 199–206.

    Article  CAS  Google Scholar 

  • Von Kartnig, Th., R. Herbst and F.J. Graune, 1965. Zur Frage der Sapononverteilung bei Aesculus hippocastanum Während Verschiedener Keimungs-und Wachstumsstadien. 2. Mitteilung: Über den jahreszeitlichen Gehalt einiger Organe von Aesculus hippocastanum an Aescin. Planta Med. 1: 39–45.

    Article  Google Scholar 

  • Von Kartnig, Th., F.J. Graune and R. Herbst, 1966. Zur Frage der Sapononverteilung bei Aesculus hippocastanum Während Verschiedener Keimungs-und Wachstumsstadien. 3. Mitteilung: Die Bildung von Aescin bei Aesculus hippocastnum und Aesculus parviflora nach der Verabreichung von Mevalonsäurelacton. Planta Med. 2: 121–125.

    Article  Google Scholar 

  • Von Kartnig, Th. and A. Hiermann, 1968. Saponinverteilung bei Aesculus hippocastnum Während Verschiedener Entwicklungsstaiden. 4. Mitteilung: Beobachtungen über die Bildung von Aescin bei jungen Pflanzen nach Verabreichung von 2-14C-Mevalonsäurelacton (2-14C-MSL). Planta Med. 1: 109–113.

    Article  Google Scholar 

  • Walkey, D.G.A., 1972. Production of apple plantlets from axillary-bud meristem. Can. J. Plant Sci. 52: 1082–1085.

    Article  Google Scholar 

  • Wang, D.Y. and I.K. Vasil, 1982. Somatic embryogenesis and plant regeneration from inflorescence segments of Pennisetum purpureum Schum. (Napier of elephant grass). Plant Sci. Lett. 25: 147–154.

    Article  Google Scholar 

  • Xu, N., K.M. Coulter and D.J. Bewley, 1990. Abscisic acid and osmoticum prevent germinatin of developing alfalfa embryos, but only osmoticum mainteins the synthesis of developmental proteins. Planta 182: 382–390.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Radojević, L. (1995). Somatic embryogenesis in horse chestnut (Aesculus hippocastanum L.). In: Jain, S.M., Gupta, P.K., Newton, R.J. (eds) Somatic Embryogenesis in Woody Plants. Forestry Sciences, vol 44-46. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0491-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0491-3_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4220-8

  • Online ISBN: 978-94-011-0491-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics