Skip to main content

Nonlocal Density Functionals for Exchange and Correlation: Theory and Applications

  • Chapter
Density Functional Theory of Molecules, Clusters, and Solids

Part of the book series: Understanding Chemical Reactivity ((UCRE,volume 12))

Abstract

Density functional theory1–5 provides a common foundation for electronic structure calculations in chemistry and solid-state physics. Under the assumption of static nuclei, this theory predicts ground-state bond lengths, bond angles, energies, and electron spin densities that are exact in principle (Section 2). In practice, the density functional for the exchange-correlation energy must be approximated. The local spin density approximation (Section 3) has proved to be simple, tractable, and usefully accurate, despite its typical overestimation of bonding or cohesive energies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Hohenberg and W. Kohn, Phys Rev. 136, B864 (1964);

    Article  Google Scholar 

  2. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  3. R.O. Jones and 0. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).

    Article  CAS  Google Scholar 

  4. R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford, New York, 1989).

    Google Scholar 

  5. E. S. Kryachko and E.V. Ludeña, Energy Density Functional Theory of Many-Electron Systems (Kluwer Academic, Dordrecht, 1990).

    Book  Google Scholar 

  6. R.M. Dreizler and E.K.U. Gross, Density Functional Theory (Springer-Verlag, Berlin, 1990).

    Book  Google Scholar 

  7. D.C. Langreth and J.P. Perdew, Solid State Commun. 17, 1425 (1975);

    Article  Google Scholar 

  8. D.C. Langreth and J.P. Perdew, Phys. Rev. B15, 2884 (1977).

    Google Scholar 

  9. O. Gunnarsson and B.I. Lundqvist, Phys. Rev. B13, 4274 (1976).

    Google Scholar 

  10. D.C. Langreth and J.P. Perdew, Phys. Lett. 92A, 451 (1982).

    Google Scholar 

  11. D.C. Langreth and J.P. Perdew, Phys. Rev. B26, 2810 (1982).

    Google Scholar 

  12. J.P. Perdew and Y. Wang, Phys. Rev. B46, 12947 (1992).

    Google Scholar 

  13. V. Tschinke and T. Ziegler, J. Chem. Phys. 93, 8051 (1990).

    Article  CAS  Google Scholar 

  14. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Phys. Rev. B46, 6671 (1992).

    Google Scholar 

  15. J.P. Perdew, Adv. in Quantum Chem. 21, 113 (1990), and references therein.

    Article  CAS  Google Scholar 

  16. J.P. Perdew, in Electronic Structure of Solids ’91. edited by P. Ziesche and H. Eschrig (Akademie Verlag, Berlin, 1991).

    Google Scholar 

  17. M. Levy and J.P. Perdew, Phys. Rev. B48, October 15, 1993.

    Google Scholar 

  18. M. Levy, Phys. Rev. A43, 4637 (1991).

    Google Scholar 

  19. A. Görling and M. Levy, Phys. Rev. A45, 1509 (1992).

    Google Scholar 

  20. J.P. Perdew and A. Zunger, Phys. Rev. B23, 5048 (1981), and references therein.

    Google Scholar 

  21. D. Mearns, Phys. Rev. B138. 5906 (1988)

    Google Scholar 

  22. K. Schönhammer and 0. Gunnarsson, ibid. 37, 3128 (1988)

    Google Scholar 

  23. D. Mearns and W. Kohn, ibid. 39, 10669 (1989).

    Google Scholar 

  24. J.P. Perdew, R.G. Parr, M. Levy, and J.L. Balduz, Jr., Phys. Rev. Lett. 49, 1691 (1982)

    Article  CAS  Google Scholar 

  25. J.P. Perdew and M.Levy, ibid. 51, 1884 (1983)

    Article  CAS  Google Scholar 

  26. L. J. Sham and M. Schlüter, ibid. 51, 1888 (1983).

    Article  Google Scholar 

  27. U. von Barth and L. Hedin, J. Phys. C5, 1629 (1972).

    Google Scholar 

  28. O.V. Gritsenko and G.M. Zhidomirov, Chem. Phys. 116, 21 (1987).

    Article  CAS  Google Scholar 

  29. S.H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).

    Article  CAS  Google Scholar 

  30. J.P. Perdew and Y. Wang, Phys. Rev. B45, 13244 (1992).

    Google Scholar 

  31. L.J. Sham, in Computational Methods in Band Theory, P.M. Marcus, J.F. Janak, and A.R. Williams, eds. (Plenum, NY, 1971).

    Google Scholar 

  32. S.-K. Ma and K.A. Brueckner, Phys. Rev. 165, 18 (1968).

    Article  Google Scholar 

  33. M. Rasolt, Phys. Rev. B16, 3234 (1977).

    Google Scholar 

  34. L. Kleinman and S. Lee, Phys. Rev. B37, 4634 (1988).

    Google Scholar 

  35. D.C. Langreth and J.P. Perdew, unpublished.

    Google Scholar 

  36. P. Bagno, O. Jepsen, and O. Gunnarsson, Phys. Rev. B40, 1997 (1989).

    Google Scholar 

  37. D.C. Langreth and J.P. Perdew, Phys. Rev. B21, 5469 (1980).

    Google Scholar 

  38. D.C. Langreth andM.J. Mehl, Phys. Rev. B28, 1809 (1983).

    Google Scholar 

  39. C.D. Hu and D.C. Langreth, Physica Scripta 32, 391 (1985).

    Article  CAS  Google Scholar 

  40. C.D. Hu and D.C Langreth, Phys. Rev. B33, 943 (1986).

    Google Scholar 

  41. D.C. Langreth and S.H. Vosko, Phys. Rev. Lett. 59, 497 (1987).

    Article  CAS  Google Scholar 

  42. J.P. Perdew, Phys. Rev. Lett. 55, 1665 (1985).

    Article  CAS  Google Scholar 

  43. J.P. Perdew and Y. Wang, Phys. Rev. B33, 8800 (1986).

    Google Scholar 

  44. J.P. Perdew, Phys. Rev. B33, 8822 (1986)

    Google Scholar 

  45. J.P. Perdew, Phys. Rev. 34, 7406 (E) (1986).

    Google Scholar 

  46. J.P. Perdew, Physica B172, 1 (1991).

    Google Scholar 

  47. J.P. Perdew and Y. Wang, unpublished. For applications, see Ref. 12.

    Google Scholar 

  48. Y. Wang, J.P. Perdew, J.A. Chevary, L.D. Macdonald, and S.H. Vosko, Phys. Rev. A41, 78 (1990).

    Google Scholar 

  49. E. Engel, J.A. Chevary, L.D. Macdonald, and S.H. Vosko, Z. Phys. D 23, 7 (1992).

    Article  CAS  Google Scholar 

  50. Applications of this or other GGA’s are reported in Refs. 11–26 of Ref. 12, and in Refs. 44–64 below.

    Google Scholar 

  51. R. Merkle, A. Savin, and H. Preuss, Chem. Phys. Lett. 194, 32 (1992),

    Article  CAS  Google Scholar 

  52. R. Merkle, A. Savin, and H. Preuss, J. Chem. Phys. 97, 9216 (1992).

    Article  CAS  Google Scholar 

  53. J. Andzelm and E. Wimmer, J. Chem. Phys. 96, 1280 (1992).

    Article  CAS  Google Scholar 

  54. L. Fan and T. Ziegler, J. Chem. Phys. 95, 7401 (1991)

    Article  CAS  Google Scholar 

  55. T. Ziegler, Chem. Rev. 91, 651 (1991).

    Article  CAS  Google Scholar 

  56. L. Fan and T. Ziegler, J. Chem. Phys. 96, 9005 (1992).

    Article  CAS  Google Scholar 

  57. A.D. Becke, J. Chem. Phys. 96, 2155 (1992).

    Article  CAS  Google Scholar 

  58. A.D. Becke, J. Chem. Phys., 97, 9173 (1992).

    Article  CAS  Google Scholar 

  59. J.M. Seminario, Chem. Phys. Lett. 206, 547 (1993) P. Politzer and J.M. Seminario, in Trends in Physical Chemistry (Council for Scientific Research Integration, India); P. Politzer, J.M. Seminario, M.C Concha, and P.C. Redfern, Theochem. (in press); J.M. Seminario and P. Politzer, Int. J. Quantum Chem. S27 (in press);

    Article  CAS  Google Scholar 

  60. P. Politzer and J.M. Seminario, Chem. Phys. Lett. 207, 27 (1993);

    Article  CAS  Google Scholar 

  61. J.M. Seminario and P. Politzer, Chem. Phys. Lett. (in press).

    Google Scholar 

  62. P. Mlynarski and D.R. Salahub, J. Chem. Phys. 95, 6050 (1991).

    Article  CAS  Google Scholar 

  63. F. Sim, D.R. Salahub, and S. Chin, Int. J. Quantum Chem. 43, 463 (1992).

    Article  CAS  Google Scholar 

  64. R. Fournier and A.E. DePristo, J. Chem. Phys. 96, 1183 (1992).

    Article  CAS  Google Scholar 

  65. C. Amador, W.R.L. Lambrecht, and B. Segall, Phys. Rev. B46 1870 (1992).

    Google Scholar 

  66. J. Zhu, X.W. Wang, and S.CLouie, Phys. Rev. B45, 8887 (1992).

    Google Scholar 

  67. A. García, C. Elsässer, J. Zhu, S.G. Louie, and M.L. Cohen, Phys. Rev. B46, 9829 (1992).

    Google Scholar 

  68. G. Ortiz, Phys. Rev. B45, 11328 (1992).

    Google Scholar 

  69. B. Barbiellini, E.G. Moroni, and T. Jarlborg, J. Phys. Condensed Matter 2, 7597 (1990)

    Article  CAS  Google Scholar 

  70. B. Barbiellini, E.G. Moroni, and T. Jarlborg, Helv. Phys. Acta 64, 164 (1991).

    Google Scholar 

  71. D.J. Singh and J. Ashkenazi, Phys. Rev. B46, 11570 (1992).

    Google Scholar 

  72. M. Körling and J. Häglund, Phys. Rev. B45, 13293 (1992). For full-potential calculations which show that GGA is superior to LSD in 3d, 4d, and 5d transition metals, see V. Ozolins and M. Körling, unpublished (1993).

    Google Scholar 

  73. T. Asada and K. Terakura, Phys. Rev. B46, 13599 (1992).

    Google Scholar 

  74. K. Laasonen, F. Csajka, and M. Parrinello, Chem. Phys. Lett.12. 194. 172 (1992).

    Article  Google Scholar 

  75. C. Lee, D. Vanderbilt, K. Laasonen, R. Car, and M. Parinello, Phys. Rev. Lett. 69, 462 (1992).

    Article  CAS  Google Scholar 

  76. E. Aprà, M. Causà, M. Prencipe, R. Dovesi, and V.R. Saunders, J. Phys. Cond. Matter 5, 2969 (1993).

    Article  Google Scholar 

  77. A.D. Becke, Phys. Rev. A38, 3098 (1988).

    Google Scholar 

  78. S.H. Vosko and L.D. Macdonald, in Condensed Matter Theories, edited by P. Vashishta , R.K. Kalia, and R.F. Bishop (Plenum, New York, 1987), Vol. 2.

    Google Scholar 

  79. A.E. DePristo and J.D. Kress, J. Chem. Phys. 86, 1425 (1987).

    Article  CAS  Google Scholar 

  80. C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B37, 785 (1988).

    Google Scholar 

  81. A.D. Becke, J. Chem. Phys. 88, 1053 (1988).

    Article  CAS  Google Scholar 

  82. L.C. Wilson and M. Levy, Phys. Rev. B41, 12930 (1990).

    Google Scholar 

  83. H. Lee, C. Lee, and R.G. Parr, Phys. Rev. A44, 768 (1991).

    Google Scholar 

  84. Y. Wang and J.P. Perdew, Phys. Rev. B43, 8911 (1991).

    Google Scholar 

  85. G. Ortiz, Phys. Rev. B45, 11328 (1992).

    Google Scholar 

  86. J.A. Alonso and L.A. Girifalco, Solid State Commun. 24, 135 (1977).

    Article  CAS  Google Scholar 

  87. O. Gunnarsson, M. Jonson, and B.I. Lundqvist, Solid State Commun. 24, 765 (1977).

    Article  CAS  Google Scholar 

  88. J.A. Alonso and L.A. Girifalco, Phys. Rev. B17, 3735 (1978).

    Google Scholar 

  89. 0. Gunnarsson, M. Jonson, and B.I. Lundqvist, Phys. Rev. B20, 3136 (1979).

    Google Scholar 

  90. J.A. Alonso and L.C. Balbás, Phys. Lett. 81A, 467 (1981).

    Google Scholar 

  91. L.C. Balbás, A. Rubio, J.A. Alonso, and G. Borstel, J. de Chim. Phys. 86, 799 (1989).

    Google Scholar 

  92. O. Gunnarsson and R.0. Jones, Physica Scripta 21, 394 (1980)

    Article  CAS  Google Scholar 

  93. L. Fritsche and H. Gollisch, Z. Phys. B48, 209 (1982).

    Article  Google Scholar 

  94. E. Chacón and P. Tarazona, Phys. Rev. B37, 4013 (1988).

    Google Scholar 

  95. F. Manghi, G. Riegler, C.M. Bertoni, C. Calandra, and G.B. Bachelet, Phys. Rev. B28, 6157 (1983).

    Google Scholar 

  96. S. Ossicini and C.M. Bertoni, Phys. Rev. A31, 3550 (1985).

    Google Scholar 

  97. H. Przybylski and G. Borstel, Solid State Commun. 52, 713 (1984).

    Article  CAS  Google Scholar 

  98. S. Ossicini, C.M. Bertoni, and P. Gies, Surf. Sci. 178, 244 (1986).

    Article  CAS  Google Scholar 

  99. F. Manghi, Phys. Rev. B33, 2554 (1986). 87

    Google Scholar 

  100. A.C. Pedroza, Phys. Rev. A33, 804 (1986).

    Google Scholar 

  101. S. Ossicini, F. Finocchi, and C.M. Bertoni, Surf. Sci. 189, 776 (1987).

    Article  Google Scholar 

  102. E. Chacon and P. Tarazona, Phys. Rev. B37, 4020 (1988).

    Google Scholar 

  103. B. Barbiellini-Amidei and T. Jarlborg, Phys. Lett. A139. 75 (1989).

    Google Scholar 

  104. A. Rubio, L.C Balbás, and J.A. Alonso, Phys. Rev. B46, 4891 (1992).

    Google Scholar 

  105. M.D. Glossman, A. Rubio, L.C. Balbás, J.A. Alonso, and L. Serra, Int. J. Quantum Chem. 45, 333 (1993).

    Article  CAS  Google Scholar 

  106. M.D. Glossman, A. Rubio, L.C. Balbás, and J.A. Alonso, Phys. Rev. A47, 1804 (1993).

    Google Scholar 

  107. O.V. Gritsenko, A. Rubio, L.C Balbás, and J.A. Alonso, Chem. Phys. Lett., 205, 348 (1993).

    Article  CAS  Google Scholar 

  108. O.V. Gritsenko, A. Rubio, L.C. Balbás, and J.A. Alonso, Phys. Rev. A47, 1811 (1993).

    Google Scholar 

  109. D.A. Kirzhnits, Sov. Phys. JETP 5, 64 (1957).

    Google Scholar 

  110. J.P. Perdew, Phys. Lett. A165. 79 (1992).

    Google Scholar 

  111. M. Levy, Proc. Natl. Acad. Sci. USA 76, 6062 (1979).

    Article  CAS  Google Scholar 

  112. A. Görling, Phys. Rev. A46, 3753 (1992)

    Google Scholar 

  113. Y. Wang and R.G. Parr, Phys. Rev. A47, R1591 (1993).

    Google Scholar 

  114. J.D. Talman and W. F. Shadwick, Phys. Rev. A14, 36 (1976).

    Google Scholar 

  115. J.B. Krieger, Y. Li, and G.J. Iafrate, Phys. Rev. A45, 101 (1992),

    Google Scholar 

  116. J.B. Krieger, Y. Li, and G.J. Iafrate, Phys. Rev. A46, 5453 (1992).

    Google Scholar 

  117. J.F. Dobson, J. Phys. Condensed Matter 4, 7877 (1992).

    Article  Google Scholar 

  118. J.P. Perdew, in Density Functional Methods in Physics, eds. R.M. Dreizler and J. da Providencia (Plenum, New York, 1985).

    Google Scholar 

  119. M.R. Pederson, R.A. Heaton, and C.C. Lin, J. Chem. Phys. 80, 1972 (1984).

    Article  CAS  Google Scholar 

  120. See Refs. 39–81 of Ref. 13.

    Google Scholar 

  121. M.J. Puska and R.M. Nieminen, Phys. Rev. B43, 12221 (1991).

    Google Scholar 

  122. A. Svane, Phys. Rev. Lett. 68, 1900 (1992).

    Article  CAS  Google Scholar 

  123. M.R. Pederson, R.A. Heaton, and C.C. Lin, J. Chem. Phys. 82, 2688 (1985).

    Article  CAS  Google Scholar 

  124. Y. Li and J.B. Krieger, Phys. Rev. A4l, 1701 (1990).

    Google Scholar 

  125. H. Stoll, C.M.E. Pavilidou, and H. Preuss, Theoret. Chim. Acta 49, 143 (1978);

    Article  CAS  Google Scholar 

  126. H. Stoll, E. Golka, and H. Preuss, Theoret. Chim. Acta 55, 29 (1988).

    Article  Google Scholar 

  127. Y. Li, J.B. Krieger, and J.P. Perdew, ‘work in progress.

    Google Scholar 

  128. A.D. Becke, J. Chem. Phys. 98, 1372 (1993); ibid. 5648 (1993).

    Article  CAS  Google Scholar 

  129. E. Clementi and S.J. Chakravorty, J. Chem. Phys. 93, 2591 (1990).

    Article  CAS  Google Scholar 

  130. A. Rubio and J.P. Perdew, work in progress.

    Google Scholar 

  131. M. Rasolt and D.J. W. Geldart, Phys. Rev. B34, 1325 (1986)

    Google Scholar 

  132. M. Rasolt and H.L. Davis, Phys. Lett. 86A, 45 (1981).

    CAS  Google Scholar 

  133. S.H. Vosko and D.C. Langreth (private communication) have suggested that GEA may suffice for the “second-order exchange energy,“ the leading correction to RPA in the high-density limit.

    Google Scholar 

  134. J.B. Krieger, private communication.

    Google Scholar 

  135. J.P. Perdew, N.E. Brener, J. Callaway, M. Levy, D. Bagayoko, J.M. Tyler, and G. T. Rosensteel, work in progress.

    Google Scholar 

  136. A. Savin, Int. J. Quantum Chem. S22, 59 (1988)

    Article  Google Scholar 

  137. J. de Chim. Phys. 86, 757 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Colin WIllmer and Mark Fricker

About this chapter

Cite this chapter

Perdew, J.P. (1996). Nonlocal Density Functionals for Exchange and Correlation: Theory and Applications. In: Ellis, D.E. (eds) Density Functional Theory of Molecules, Clusters, and Solids. Understanding Chemical Reactivity, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0487-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0487-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4218-5

  • Online ISBN: 978-94-011-0487-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics