Skip to main content

Embedded Clusters: A Viable Approach for Surfaces and Impurities

  • Chapter
Density Functional Theory of Molecules, Clusters, and Solids

Part of the book series: Understanding Chemical Reactivity ((UCRE,volume 12))

Abstract

Formulation of physical problems in terms of localized orbitals has been utilized since the earliest days of quantum mechanics. Introduction and refinement of the Crystal Field (CF) model by VanVleck and others 1 laid the ground work for an atoms-in-solids theory which remains viable until today. Mulliken, among others, realized quite early that a Ligand Field Model which explicitly treats overlap and covalency effects between a central atom and its nearest neighbors offered good prospects for both semi-empirical and first principles approaches2 . With description of more distant atoms given by the simpler CF, the ligand field model already shows the main features of a modern cluster scheme:

  1. 1

    A central region (I), which is described as accurately as possible,

  2. 2

    A boundary region (II), where interactions with region I are treated more or less explicitly, but with less precision, and

  3. 3

    An asymptotic region (III), where only the dominant features, typically the long range components of potentials are invoked.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.H.Van Vleck, “The Theory of Electric and Magnetic Susceptibilties”,(Oxford Univ.Press,London, 1932);

    Google Scholar 

  2. E.U. Condon and G.H.Shortlcy, “The Theory of Atomic Spectra”,(Cambridge Univ.Press, Cambridge, 1959).

    Google Scholar 

  3. R.S.Mulliken, J.Am.Chem.Soc. 64,811(1952);

    Article  Google Scholar 

  4. C.K.Jorgensen, Absorption Spectra and Chemical Bonding”,(Pcrgamon, New York, 1962);

    Google Scholar 

  5. C.J.Ballhausen, “Introduction to Ligand Field Theory”,(McGraw-Hill, New York, 1962);

    Google Scholar 

  6. H.L.Schläfer and G. Gliemann, “Basic Principles of Ligand Field Theory”, (Wiley-Interscience,New York,1969).

    Google Scholar 

  7. F. Yonezawa,ed.,“Molecular Dynamics Simulations”, (Springer-Verlag,Berlin,1992);

    Google Scholar 

  8. C.R.A.Catlow, I.D.Faux and M.J.Norgett,J.Phys. C9,419(1976);

    Google Scholar 

  9. J.F.Lutsko, D.Wolf, S.Yip,S.R.Philpott and T.Nuuyen, Phys.Rev. B38,2887(1988).

    Google Scholar 

  10. H.F.Schaefer ,III,ed.,“Methods of Electronic Structure Theory”,(Plenum,NewYork,1977).

    Google Scholar 

  11. W.Yang , this volume;

    Google Scholar 

  12. W.Yang, Phys.Rev.Lett. 66,1438(1991).

    Google Scholar 

  13. J.H.Wilkinson, “The Algebraic Eigenvalue Problem”,(Clarendon Press, Oxford, 1965).

    Google Scholar 

  14. P-O Löwdin,J.Mol.Spcctry.14,112(1964).

    Article  Google Scholar 

  15. See for example, H.F. Hameka,“Advanced Quantum Chemistry”,(Addison-Wesley, Reading, Mass.,1965).

    Google Scholar 

  16. D.E.Ellis, A.J.Frceman and P.Ros, Phys.Rev. 176,688(1968).

    Article  CAS  Google Scholar 

  17. W.A .Harrison, “Electronic Structure and the Properties of Solids”,(Freeman, San Francisco, 1980);

    Google Scholar 

  18. M.C.Payne, M.P.Tetcr, D.C.Allan, T.A.Arias and J.D.Joannopoulos, Rev.Mod.Phys. 64, 1045(1992).

    Article  CAS  Google Scholar 

  19. W.E.Pickctt, Comp.Phys.Rep. 9, 115(1989);

    Article  Google Scholar 

  20. M.L.Cohen, Phys.Repts. 110, 293(1984).

    Article  CAS  Google Scholar 

  21. J.D.Joannopoulos, in “Physics of Disordered Materials”, eds. D.Adler, H.Fritzsche, and S.R.Ovshinsky,(Plenum, New York, 1985)p19.

    Chapter  Google Scholar 

  22. K.H.Johnson, Adv.Quanlum Chcm. 7,143(1973);

    Article  CAS  Google Scholar 

  23. J.C.Slater,“The Self-Consistent Field for Molecules and Solids”,(McGraw-Hill, New York,1974).

    Google Scholar 

  24. R.Haydock, Sol.Sta.Phys.35, eds. H.Ehrenreich, F.Seitz and D.Turnbull.(Acadcmic,New York,1980),p216;

    Google Scholar 

  25. D.W.Bullct, ibid,p129.

    Google Scholar 

  26. I.Lindgren and J.Morrison, “Atomic Many-Body Theory”, (Springer-Verlag, Berlin, 1982).

    Book  Google Scholar 

  27. D.R.Hartree,“Thc Calculation of Atomic Structures”, (Wiley, New York, 1958);

    Google Scholar 

  28. C.Froesc-Fischer,“The Harlrce-Fock Method for Atoms”,(Wiley,New York, 1977).

    Google Scholar 

  29. L.Laaksonen, D.Sundholm and P.Pyykkö, Comp.Phys.Rep.4,313(1986);

    Article  CAS  Google Scholar 

  30. D.Sundholm J.Olsen, P.-A. Malmquist and B.O.Roos,in “Numerical Determinaiion of the Electronic Structure of Atoms, Diatomic and Polyatomic Molecules”, ed. by M.Defranceschi and J.Delhalle,(Kluwer,Dordrecht,1989)p.329;

    Chapter  Google Scholar 

  31. D.Heinemann, A.Rosen and B.Fricke,Physica Scripta 42, 692(1990);

    Article  CAS  Google Scholar 

  32. A.D.Becke and R.M.Dickson, J.Chem.Phys. 92, 3610(1990) and references therein.

    Article  CAS  Google Scholar 

  33. J.H.Ahlberg, E.N.Nilson and J.L.Walsh,“The Theory of Splines and Their Applications”,(Academic,New York, 1967);

    Google Scholar 

  34. “Finite Elements in Physics”, ed. R.0Gruber,(North-Holland, Amsterdam, 1987).

    Google Scholar 

  35. S.R.White, J.W.Wilkins and M.P.Teler,Phys.Rev.B39,5819(1989);

    Google Scholar 

  36. Y.Meyer, “Wavelets and Operators”, (Cambridge Univ. Press, 1992);

    Google Scholar 

  37. K.Cho, T.A.Arias and J.D.Joannopoulos, Phys.Rev.Lett. 71, 1808(1993).

    Article  CAS  Google Scholar 

  38. B.Delley and D.E.Ellis, J.Chem.Phys. 76,1949(1982).

    Article  CAS  Google Scholar 

  39. For example,(a)H.F.Schaefcr,III,“The Electronic Structure of Atoms and Molecules”,(Addison Wesley,Reading,Mass., 1972);

    Google Scholar 

  40. W.J.Hehre, L.Radom, P. v.R.Schleyer and J.A.Pople, “Ab Inilio Molecular Orbital Theory”,(Wiley-Interscience, New York, 19xx).

    Google Scholar 

  41. D .R.Salahub, in “Comparison of Ab Initio Quantum Chemistry with Experiment for Small Molecules”,eds. W.Weltner,Jr. and R.J. VanZee,(Reidel, Dordrecht, 1985);

    Google Scholar 

  42. B.I.Dunlap, Phys.Rev. A41,5691(1990);

    Google Scholar 

  43. G.Pacchioni and N.Rösch, Inorg.Chem. 29,2901(1990).

    Article  CAS  Google Scholar 

  44. B.I.Dunlap, this volume.

    Google Scholar 

  45. E.Clementi and D.R.Davis,J.Comput.Phys.2,223(1967);

    Google Scholar 

  46. J.Almlöf and P.R.Taylor,Adv.Quantum Chem.22,301(1991).

    Article  Google Scholar 

  47. B.O .Roos, in “Methods in Computational Molecular Physics”,eds. G.F.Direcksen and S.Wilson,(Reidcl,Dordrecht,1983)p161;

    Chapter  Google Scholar 

  48. P.E.M.Siegbahn, ibid.p189.

    Google Scholar 

  49. E.J.Baerends, D.E.Ellis and P.Ros, Chem.Phys. 2,41(1973).

    Article  CAS  Google Scholar 

  50. T.Zieglcr, Chcm.Rev. 91,651(1991);

    Article  Google Scholar 

  51. E.J.Baercnds and P. Ros.,Int.J.Quantum Chem.S12,169(1978);

    Google Scholar 

  52. E.J.Baerends, P.Ros and D.E.Ellis, Chem.Phys.2,41(1973).

    Article  CAS  Google Scholar 

  53. O.K.Andersen,Phys.Rev.B12.3060(1975);

    Google Scholar 

  54. O.K.Andersen, in “The Electronic Structure of Complex Systems”,eds. W.Temmerman and P.Phariseau,(Plenum,New York,1984).

    Google Scholar 

  55. R.O.Jones and O.Gunnarson, Rev.Mod.Phys. 61,689(1989).

    Article  CAS  Google Scholar 

  56. J.C.Slater and K.H.Johnson,Phys.Rev.B5,844(1972);

    Google Scholar 

  57. K.H.Johnson, J.G.Norman,Jr. and J.W.D.Connolly, in “Computational Methods for Large Molecules and Localized States in Solids”,eds. F.Herman,A.D.McLean and R.K.Nesbet,(Plenum,New York,1975)p161.

    Google Scholar 

  58. J.Harris and J.E.Müllcr,in “Local Density Approximations in Quantum Chemistry and Solid State Physics”, eds. J.P.Dahl and J.Avery,(Plenum,New York, 1984)p531;

    Chapter  Google Scholar 

  59. O.Gunnarson, J.Harris and R.O.Jones, Phys.Rev.B15,3027(1977).

    Google Scholar 

  60. R.O.Jones and O.Gunnarson, Revs.Mod.Phys. 61,689(1989);

    Article  CAS  Google Scholar 

  61. A.Rose’n, D.E.Ellis, H.Adachi and F.W.Averill, J.Chem.Phys. 65,3629(1976).

    Article  Google Scholar 

  62. D.E.Ellis, IntJ.Quantum Chem. 2S,35(1968).

    Google Scholar 

  63. D.E.Ellis and B.Delley,in “Local Density Approximations in Quantum Chemistry and Solid State Physics”, eds. J.P.Dahl and J.Avery,(Plenum, New York,1984)p559;

    Chapter  Google Scholar 

  64. D.E.Ellis and G.L.Goodman,intl.J.Quantum Chem.25,185(1984);

    Article  CAS  Google Scholar 

  65. D.E.Ellis and G.F.Holland, Chemica Scripta 26,441(1986).

    CAS  Google Scholar 

  66. P.H.Dcdcrichs, R.Zeller, H.Akai, S.Blügel and A.Oswald, Phil.Mag. 51,137(1985);

    Article  Google Scholar 

  67. R.Zeller, R.Podloucky and P.H.Dcdcrichs, Z.Phys. 38,165(1980).

    Article  CAS  Google Scholar 

  68. J.Deutz, P.H.Dcdcrichs and R.Zellcr, J.Phys. F11,1787(1981).

    Article  Google Scholar 

  69. A.Gonis, X.-G.Zhang and D.M.Nicholson, Phys.Rev.B38,3564(1988).

    Google Scholar 

  70. J.S.GriIïith,“Thc Theory of Transition Metal Ions”,(Cambridge Univ. Press, Cambridge, 1964);

    Google Scholar 

  71. C.J.Ballhauscn,“Introduction to Ligand Field Theory”,(McGraw-Hill, New York,1962).

    Google Scholar 

  72. H.Chen and J.Callaway, Phys.Rev. B44, 2289(1991).

    Google Scholar 

  73. D.E.Ellis, G.A.Bcnesh and E.Byrom, Phys.Rev. B16,3308(1977).

    Google Scholar 

  74. P.F.Walch and D.E.Ellis, Phys.Rev. B7,903(1973).

    Google Scholar 

  75. T.O.Woodruff, Sol. State Phys. 4, eds. F. Seitz and D. Turnbull,(Academic, New York, l956)p 367.,

    Google Scholar 

  76. W.A.Harrison, “Electronic Structure and Properties of Solids”, (Freeman, San Francisco, 1980).

    Google Scholar 

  77. E.L.Shirley, D.C.Allan, R.M.Martin and J.D.Joannopoulos, Phys.Rev. B40,3652(1989);

    Google Scholar 

  78. G.B.Bachclct, D.R.Hamann and M.Schlütcr, Phys.Rev. B26,4199(1982);

    Google Scholar 

  79. D.Vanderbilt, Phys.Rev. B32,8412(1985);

    Google Scholar 

  80. S.G.Louie, S.Froycn and M.L.Cohen, Phys.Rev. B26,1738(1982);

    Google Scholar 

  81. M.T.Yin and M.L.Cohen, Phys.Rev. B26,3259(1982).

    Google Scholar 

  82. L.A.Hcmstreet, Phys.Rcv.B22,4590(1980);

    Google Scholar 

  83. ibid,B15,834(1977).

    Google Scholar 

  84. The actual interaction of H with Si surfaces is of great practical interest as well; e.g., J.A.Appelbaum,D.R.Hamann and K.H.Tasso, Phys.Rev.Lett. 39, 1487(1977).

    Article  CAS  Google Scholar 

  85. G.L.Goodman, D.E.Ellis, E.E.Alp and L.Soderholm, J.Chem.Phys. 91,2983(1989).

    Article  CAS  Google Scholar 

  86. J.Guo, D.E.Ellis and D.J.Lam, Phys.Rev. B45,3204(1992).

    Google Scholar 

  87. E.Wimmei, H.Krakauer, M.Weinert and A.J.Freeman, Phys.Rev. B24,864(1981);

    Google Scholar 

  88. J.I.Lee, S.C.Hong, A.J.Freeman and C.L.Fu, Phys.Rev. B47,810(1993).

    Google Scholar 

  89. E.Wimmer, A.J.Freeman, J.R.Hiskes and A.M.Karo, Phys.Rev. B28,3074(1983).

    Google Scholar 

  90. G.Brocks, P.J.Kelley and R.Car, Surf. Sci. 270, 860(1992) and references therein;

    Article  Google Scholar 

  91. J.E.Norlhrup, Phys.Rev. B44, 1419(1991).

    Google Scholar 

  92. G.F.Holland, D.E.Ellis and W.C.Trogler, J.Chem.Phys. 83,3507(1985);

    Article  CAS  Google Scholar 

  93. D.R.Salahub and F.Raatz, Intl.J.Quantum Chem.Symp. 18,173(1984);

    Article  CAS  Google Scholar 

  94. F.Raatz and D.R.Salahub, Surf.Sci. 146, L609(1984);

    Article  CAS  Google Scholar 

  95. N.Rösch, L.Ackcrmann, G.Pacchioni and B.I.Dunlap, J.Chem.Phys. 95, 7004(1991).

    Article  Google Scholar 

  96. “Quanlum Chemistry Approaches to Chcmisorplion and Heterogeneous Catalysis”, ed. F.Ruette,(Kluwer, Dordrecht, 1992);

    Google Scholar 

  97. “The Challenge of d and f Electrons”, eds. D.R.Salahub and M.C. Zerner, (Am.Chcm.Soc,Washington,DC, 1989).

    Google Scholar 

  98. T.Gotoh, S.Murakami, K.Kinosita, and Y.Murata,J.Phys.Soc.Jpn 50,2063(1981)

    Article  CAS  Google Scholar 

  99. M.R.Wellon-Cook and W. Berndt, J.Phys.C15,5961(1982)

    Google Scholar 

  100. T.Urano, T.Kanaji, and M.Kaburagi, Surf. Sci. 134,109(1983)

    Article  CAS  Google Scholar 

  101. D.L.Blanchard, D.L.Lessor, J.P.LaFemina, D.R.Baer, W.K.Ford, and T.Guo,J.Vac.Sci.Tchnol.A9,1814(1991).

    Article  Google Scholar 

  102. K.H.Rieder,Surf.Sci.118,57(1982)

    Article  CAS  Google Scholar 

  103. G.Brusdeylins, R.B.Doak, J.G.Skofronick, and J.P.Toennies, Surf.Sci. 128,191(1983)

    CAS  Google Scholar 

  104. P.Cantini and E.Cevasco, Surf.Sci. 148,37(1984)

    Article  CAS  Google Scholar 

  105. D.R.Jung, M.Mahgerefteh, and D.R.Frankl, Phys.Rev.B39,11164(1989).

    Google Scholar 

  106. T.Meichcl, J.Suzanne and J.-M. Gay, C.R.Acad.Sci. 303,989(1986);

    Google Scholar 

  107. J.L.Jordan, J.P. McTague, J.B.Hastings and L.Passel, Surf.Sci. 150,L82(1985);

    Article  CAS  Google Scholar 

  108. J.P.Coulomb, T.S.Sullivan and O.E.Vilches. Phys.Rev. B30,4753(1984).53J.Guo, Phys.Rev. B,to be published.

    Google Scholar 

  109. J.Guo, Phys.Rev. B,to be published.

    Google Scholar 

  110. J.L.Gilman, J.Appl.Phys. 31,2208(1960).

    Article  CAS  Google Scholar 

  111. A.Gibson, R.Haydock, and J.P.LaFemina, J.Vac.Sci.Technol. A10,236(1992).

    Google Scholar 

  112. M.Causa, R.Dovcsi, C.Pisani, and C.Roetti, Surf.Sci.175,551(1986).

    Article  CAS  Google Scholar 

  113. N.Esberg and J.K.Norskov, Phys.Rcv.Lett. 45,807(1980).

    Article  Google Scholar 

  114. D.L.Blanchard, D.L.Lcssor, J.P.LaFemina, D.R.Baer, W.K.Ford and T.Guo, J.Vac.Sci.A9,1814(1991).

    Article  Google Scholar 

  115. H.L.M.Chang, H.You, J.Guo and D.J.Lam, Appl.Surf.Sci. 48/49, 12(1991);

    Article  CAS  Google Scholar 

  116. H.You, H.L.M.Chang, R.P.Chiarcllo and D.J.Lam, Mat.Res.Soc.Proc. 221,181(1991).

    Article  CAS  Google Scholar 

  117. I.P.Batra, J.Phys.Cl5, 5399(1982);

    Google Scholar 

  118. S.Ciraci and I.P.Balra, Phys.Rev. B28,982(1983);

    Google Scholar 

  119. R.H.French, J.Am.Ccr.Soc. 73, 477(1990);

    Article  CAS  Google Scholar 

  120. Y.N.Xu and W.Ching, Phys.Rev. B43, 4461(1991);

    Google Scholar 

  121. J.Guo, D.E.Ellis and D.J.Lam, Phys.Rev.B45,3204(1992);

    Google Scholar 

  122. L.Salasco, R.DOvesi, R.Orlando, M.Causa and V.R.Saunders, Mol.Ply. 72, 267(1991);

    Article  CAS  Google Scholar 

  123. M.Causa, R.Dovesi, C.Roetti, K.Kotomin and V.R.Suanders, Chem.Phys.Lett. 140, 120(1987);

    Article  CAS  Google Scholar 

  124. J.D.Gale, C.R.A. Callow and W.C.Mackrodt, Modelling Simul. Malrs.Sci.Eng. 1, 73(1992).

    Article  CAS  Google Scholar 

  125. N.Yao, Z.L.Wang and J.M.Cowley, Surf.Sci. 208,533(1989).

    Article  CAS  Google Scholar 

  126. J.Guo, D.E.Ellis and D.J.Lam, Phys.Rev.B45,13647(1992).

    Google Scholar 

  127. I.Manassidis, A.DeVita and M.J.Gillan, Surf.Sci.Lett. 285, L517 (1993).

    Article  CAS  Google Scholar 

  128. M.Gautier, G.Renaud, L.P.Van, B.Villette, M.Pollak, N.Thromat, F.Jollet, and J-P Durand, J.Am.Cer.Soc.(to be publish ed)

    Google Scholar 

  129. J.Guo et al.,unpublished.

    Google Scholar 

  130. U. vonBarth and L.Hedin, J.Phys. C5, 1629(1972).

    Google Scholar 

  131. D.C. Langreth and M.J.Mchl, Phys.Rev.Lett. 47, 446(1981);

    Article  CAS  Google Scholar 

  132. D.C. Langreth and M.J.Mchl ibid,(Phys.Rev. B28, 1809(1983).

    Article  Google Scholar 

  133. L.A.Tietz, S.R.Summerfelt, G.R.English and C.B.Carter, Appl.Phys.Lett. 55,1202(1989).

    Article  CAS  Google Scholar 

  134. J.Guo, H.L.M. Chang and D.J.Lam, Appl.Phys.Lett. 61,3116(1992).

    Article  CAS  Google Scholar 

  135. L.L.Hegedus, “Catalyst Design, Progress and Perspectives”, (Wiley Interscicnce, New York, 1987).

    Google Scholar 

  136. See, for example: “Metal-Support and Metal-Additive Effects in Catalysis”,B.Imelik et. al. cds.,(Elsevier,Amsterdam, 1982)

    Google Scholar 

  137. D.E .Ellis, J.Guo and D.J.Lam, J.Am.Cer.Soc.(to be published).

    Google Scholar 

  138. D.C.Cronemeyer, Phys.Rev. 87,876(1952);

    Article  CAS  Google Scholar 

  139. D.C.Cronemeyer ibid ,113,1222(1959);

    CAS  Google Scholar 

  140. R.H.Tait and R.V. Kasowski, Phys.Rev. B20,5178(1979);

    Google Scholar 

  141. V.E. Heinrich and R.L.Kurtz, Phys.Rev. B23,6280(1981).

    Google Scholar 

  142. M.Tsukada, H.Adachi and C.Satoko,Prog.Surf.Sci. 14,113(1983);

    Article  CAS  Google Scholar 

  143. L.B.Lin, S.D.Mo and D.L.Lin, J.Phys.Chem.Sol. 54,907(1993)

    Article  CAS  Google Scholar 

  144. R.V.Kasowski and R.H.Tait, Phys.Rev.B20, 5168(1979).

    Google Scholar 

  145. P.Villars and L.D.Calvert.in “Pearson’s Handbook of Crystallographic Data for Intermetallic Phases”,(American Soc. for Metals,1985)Vol.3,p2937.

    Google Scholar 

  146. W.H.Strchlow and E.L. Cook, J.Phys.Chcm.Ref.Data 2,163(1973).

    Article  Google Scholar 

  147. We define ionic character of bonding here simply as r/n, where r is the Mulliken net atomic charge and n is the formal oxidation state. As in all definitions of ionicity and covalency, absolute values depend upon the basis choice, while relative values are useful.

    Google Scholar 

  148. A.Fujishima and K.Honda,Nature238,37(1972).

    Article  CAS  Google Scholar 

  149. V.E.Henrich and R.L.Kurtz, Phys.Rev. B23,6280(1981).

    Google Scholar 

  150. T.Wolfram, J.Vac.Sci.Technol. 18,428(1981);

    Article  Google Scholar 

  151. V.E.Henrick, Rep.Prog.Phys. 48,1481(1985).

    Article  Google Scholar 

  152. M.Tsukada, H.Adachi and C.Satoko,Prog.Surf.Sci. 14,113(1983)

    Article  CAS  Google Scholar 

  153. S.Munnix and M.Schmcits, Phys.Rev.B28,7342(1983).

    Google Scholar 

  154. R. Heise and R.Courlhs, Surf.Sci.287/288,658(1993).

    Article  Google Scholar 

  155. A.E.Taverner, P.C.Hollamby, P.S. Aldridge, R.G.Egdell and W.C.Mackrodt, Surf.Sci.287/288,653(1993).

    Article  Google Scholar 

  156. V.R.PaiVerneker, A.N.Petelin, F.J.Crowne and D.C.Nagle, Phys.Rev. B40,8555(1989).

    Google Scholar 

  157. F.Zandichnadcm, R.A.Murray and W.Y.Ching, Physica B150,19(1988);

    Google Scholar 

  158. H.J.F Jansen and J.A.Gardner, Physica B10,10(1988);

    Google Scholar 

  159. H.J.FJansen, Phys.Rev. B43,7267(1991).

    Google Scholar 

  160. W.Y.Ching, D.E.Ellis and D.J.Lam, Mat.Res.Soc.Symp.Proc. 82,(Matcrials Research Society,New York, 1987)p 181.

    Google Scholar 

  161. G.A.Olah, G.K.Surya Prakash and J.Sommer, “Superacids”, (Wiley, New York, 1985).

    Google Scholar 

  162. J.J.Low, unpublished.

    Google Scholar 

  163. J.E.Hand,Jr., J.Thcrmo.Anal. 32, 1855(1987).

    Article  Google Scholar 

  164. For example; W. Heijscr, A.Th.Van Kessel and E.J. Baerends, Chem. Phys.16, 371(1976).

    Article  Google Scholar 

  165. D.D.Koclling, A.M.Boring and J.H.Wood, Sol.State Commun.47,227(1983)

    Article  Google Scholar 

  166. E.Wuilloud, B.Delley, W.D.Schneider and Y.Baer, Phys.Rev.Lett. 53,202(1984);

    Article  CAS  Google Scholar 

  167. E.Wuilloud, B.Delley, W.D.Schneider and Y.Baer ibid. 2519(1984);

    Google Scholar 

  168. E.Wuilloud, B.Delley, W.D.Schneider and Y.Baer ibid. J.Magnelism Magnet.Mater. 47&48,197(1985). These experiments were carried oul on yttria-slabilized Zr2O samples containing 9.5 mol% Y2O3.

    Article  Google Scholar 

  169. “Hydrogcn in Metals”, Vols. 28,29,Topics and Applied Physics, eds. G.Alcfcld and J.Völkl,(Springer-Verlag, Berlin, 1978).

    Google Scholar 

  170. N.W.Ashcroft and N.D.Mermin, “Solid State Physics”,(Saunders, Philadelphia, 1976);

    Google Scholar 

  171. R.A.Smilh, “Semiconductors”, 2nd ed.,(Cambridge Univ. Press, Cambridge, 1978).

    Google Scholar 

  172. E.C.Subbarao, Adv.in Ceram. 3,eds. A.H.Heuer and L.W.Hobbs,(Am.Ccram.Soc,Columbus,OH,1981)p1.

    Google Scholar 

  173. P.Steiner, S.Hüfner and W.v. Zdrojewski, Phys.Rev. B10, 4704(1974);

    Google Scholar 

  174. J.D.Cohen and C.P.Slichter, Phys.Rev. B22, 45(1980) and references therein.

    Google Scholar 

  175. J.Kameda and C.J. McMahon, Met.Trans. A, 11A (1980);

    Google Scholar 

  176. J.Kameda and C.J. McMahon ibid, 14A (1983).

    Google Scholar 

  177. J.Fricdel, Can.J.Phys. 34, 1190(1956);

    Article  Google Scholar 

  178. P.W.Anderson, Phys.Rev.124,41(1961).

    Article  CAS  Google Scholar 

  179. J.Kondo, in Sol. Sta.Phys. 23, eds. F.Seitz, D.Turnbull and H.Ehrenreich (Academic, New York,1969);

    Google Scholar 

  180. K.G.Wilson, Rev.Mod.Phys. 47, 773(1975);

    Article  Google Scholar 

  181. G.Grüner, Adv.Phys. 23, 941(1974).

    Article  Google Scholar 

  182. D.Riegel, L.Büermann, K.D.Gross, M.Luszik-Bhadra and S.N.Mishra, Phys.Rev.Lett.61, 2129(1988).

    Article  CAS  Google Scholar 

  183. J.Deutz, P.H.Dedcrichs and R.Zeller, J.Phys.F 11, 1789(1981);

    Article  Google Scholar 

  184. P.J.Braspenning, R.Zeller, A.Lodder and P.H.Dederichs, Phys.Rev. B29, 703(1984);

    Google Scholar 

  185. H.Akai, M.AKai, S.Blügel, R.Zeller, and P.H.Dederichs, J.Mag.Magn.Matl. 45, 291(1984);

    Article  CAS  Google Scholar 

  186. B.Drittler, H.Ebert, R.Zeller and P.H.Dederichs, Phys.Rev. B39, 6334(1989);

    Google Scholar 

  187. H.Akai, M.Akai, S.Blügel, B.Drittler, E.Ebert, K.Terakura. R.Zeller and P.Dederichs, Prog. Theor. Phys.Sup.101, 11(1990).

    Article  CAS  Google Scholar 

  188. P.H.Dcderichs, T.Hoshino, B.Drilller, K.Abraham and R.Zcllcr, Physica B172, 203(1991).

    Google Scholar 

  189. D.Guenzburger and D.E.Ellis, Phys.Rev. B45, 285(1992);

    Google Scholar 

  190. B.Delley, D.E.Ellis and A.J.Freeman, J.Magn.Magn.Matl. 30,71 (1982);

    Article  CAS  Google Scholar 

  191. G.A.Benesh and D.E.Ellis, Phys.Rev. B24, 1063(1981);

    Google Scholar 

  192. D.E.Ellis, G.A.Bcnesh and E.Byrom, J.Appl.Phys. 49, 1543(1978);

    Article  CAS  Google Scholar 

  193. D.E.Ellis, G.A.Bcnesh and E.Byrom ibid,Phys.Rev. B20, 1198(1979).

    Article  Google Scholar 

  194. D. Guenzburger and D.E.Ellis, Phys.Rev.Lett. 67, 3832(1991);

    Article  CAS  Google Scholar 

  195. L.Mobcrly, T.Steclhammer, O.G.Symko and W.Weyhmann, J.Low.Temp.Phys. 33, 21(1978);

    Article  Google Scholar 

  196. C. Rizutlo, Rep.Prog.Phys. 37149(1974);

    Google Scholar 

  197. C.Janot, H.Giberl and P.Mangin, J.Physiq. Coll. 35, C1,49(1974).

    Article  Google Scholar 

  198. N.N.Grcenwood and T.C.Gibb, “Mössbauer Spectroscopy”,(Chapman and Hall, London, 1971);

    Book  Google Scholar 

  199. “;Mössbaucr Isomer Shifts”, cds. G.K.Shenoy and F.E.Wagner, (North-Holland, Amsterdam, 1978).

    Google Scholar 

  200. D.E.Ellis, B.D.Dunlap, E.Baggio-Saitovitch, I.Souza Azevedo, R.B.Scorzelli and C.W.Kimball, in “Applications of the Mössbauer Effect”, eds. E.Baggio-Saitovitch, E.Galvao da Silva and H.R.Rechenbcrg,(World Scientific, Singapore,1988)p44.;

    Google Scholar 

  201. D.E.Ellis, E. Baggio-Saitovitch and D.J.Lam, Physica C198,57(1992).

    Google Scholar 

  202. J.G.Bednorz and K.A.Müllcr, Z.Phys. B64,189(1986).

    Article  Google Scholar 

  203. J.D.Jorgensen, B.Dabrowski, S.Y.Pei, D.R.Richards and D.G.Hinks, Phys.Rev. B40, 2187(1989).

    Google Scholar 

  204. C.Chaillout, S.W.Cheong, Z.Fisk, M.S.Lehmann, M.Marezio, B.Morosin and J.E.Schirber, Physica C158, 183(1989).

    Google Scholar 

  205. C.Y.Yang, S.M.Hcald, J.M.Tranquada, Y.Xu, Y.L.Wang, A.R.Moodenbaugh, D.O.Welch and M.Suenaga, Phys.Rcv.B39, 6681(1989).

    Google Scholar 

  206. E. Baggio-Saitovitch, F.J.Litterst, I.Souza-Azevedo and R.B.Scorzelli, Hyperfine Int. 50, 529(1989);

    Article  Google Scholar 

  207. T.Tamaki,T.Komai, A.Ito, Y.Maeno and T.Fujita, Sol.Sta.Commun. 65,43(1988);

    Article  CAS  Google Scholar 

  208. E.R.Bauminger, M.Kowitt, I.Felner and I.Nowik, Sol.Sta.Commun. 65,123(1988);

    Article  CAS  Google Scholar 

  209. P.Boolchand and D.McDanicl, in “Studies on High Temperature Superconductors”, ed. A.V.Narlikar, Vol.(Nova Science, New York, 1990)p143., and references therein.

    Google Scholar 

  210. B.D.Dunlap, J.G.Jorgensen, W.K.Kwok, C.W.Kimball, J.L. Matykiewicz, H.Lee and C.U.Segre,Physica C153–155, 1100(1988);

    Google Scholar 

  211. Y.Maeno, T.Tomita, M.Kyogku, S.Awaji, Y.Aoki, K.Hoshino, A.Minami and T.Fujita, Nature (London) 328, 512(1987)

    Article  CAS  Google Scholar 

  212. Z.Hiroi, M.Takano, Y.Takeda, R.Kanno and Y.Bando,JpnJ.Appl.Phys. 27, L580 (1988);

    Article  CAS  Google Scholar 

  213. Y.Xu, M.Suenaga, J.Tafto, R.L.Sabalini and A.R.Moodenbaugh, Phys.Rev. B39, 6667(1989).

    Google Scholar 

  214. S.Ohnishi and S.Sugano, Jpn.J.Appl.Phys. 21, L309 (1982);

    Article  Google Scholar 

  215. S.Sugano, Y.Tanabe and H. Kamimura, “Multiplels of Transition -Metal Ions in Crystals”, (Academic,New York, 1970).

    Google Scholar 

  216. S.Xia and D.E.Ellis, J.Lumines. 40,41, 413(1988);

    Article  Google Scholar 

  217. S.Xia, C-X. Guo, L.B. Lin and D.E.Ellis, Phys.Rev. B35, 7671(1987).

    Google Scholar 

  218. L.W.Finger and R.H.Hazen, J.Appl.Phys. 49, 5823(1978);

    Article  CAS  Google Scholar 

  219. H. d’Amour, D. Schiferl, W.Denner, H.Schulz and W.B.Holzapfel, J.Appl.Phys. 49, 4411(1978);

    Article  Google Scholar 

  220. H.K.Mao, P.M.Bell, J.W.Shaner and D.I.Steinberg, J.Appl.Phys. 49, 3276(1978).

    Article  CAS  Google Scholar 

  221. D.E.Ellis, J.G. Guo and P.K.Khowash, MS in preparation

    Google Scholar 

  222. D-P Ma, Z-Q Wang, J-R Chen and Z-G Zhang, J.Phys.C:Sol.Sta.Phys. 21, 3585(1988);

    Article  CAS  Google Scholar 

  223. D-P Ma, X-Y Huang, J-R Chen, J-P Zhang and Z-G Zhang, Phys.Rev. B48, 4302(1993);

    Google Scholar 

  224. D-P Ma, X-Y Huang, J-R Chen, J-P Zhang and Z-G Zhang ibid, B48, 14067(1993).

    Google Scholar 

  225. D-P Ma and D.E. Ellis, in preparation.

    Google Scholar 

  226. The partial density of states (PDOS) for a selected orbital of a given atom-type is generated by weighting the individual slates at energy z\ with the appropriate Mulliken population. Contributions from all levels arc then summed, using a Lorentzian line shape function.

    Google Scholar 

  227. Y.Li, Y.Duncan and T.Morrow, J.Luminescence 52, 275(1992);

    Article  CAS  Google Scholar 

  228. S.A.Basun, S.P.Fcofilov, A.A. Kaplyanskii, B.K.Sevastyanov, M.Yu.Sharonov and L.S.Starostina, J.Luminescence 52,28(1992);

    Article  Google Scholar 

  229. B.Moulton, J.Opt.Soc.Am. B3, 125 (1986).

    Google Scholar 

  230. R .Car and M.Parrinello, in “Simple Molecular Systems at Very High Density”, cds. A.Polian,P.Loubeyre and N.Boccara (Plenum, New York, 1989);

    Google Scholar 

  231. A. Pasquarello, K.Laasoncn, R.Car, C.Y.Lee and D.Vanderbilt, Phys.Rev.Lctt. 69, 1982(1992);

    Article  CAS  Google Scholar 

  232. P.J.Kelley and R.Car, Phys.Rev. B45, 6543(1992) and references therein.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Colin WIllmer and Mark Fricker

About this chapter

Cite this chapter

Ellis, D.E., Guo, J. (1996). Embedded Clusters: A Viable Approach for Surfaces and Impurities. In: Ellis, D.E. (eds) Density Functional Theory of Molecules, Clusters, and Solids. Understanding Chemical Reactivity, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0487-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0487-6_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4218-5

  • Online ISBN: 978-94-011-0487-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics