Skip to main content

Zygotic Embryogenesis in Gymnosperms and Angiosperms

  • Chapter

Part of the book series: Current Plant Science and Biotechnology in Agriculture ((PSBA,volume 20))

Abstract

Essentially all gymnosperms and angiosperms (phanerogams), like other groups of plants, begin their lives from a single cell, the fertilized egg or the zygote. What makes the zygote so unique a cell is that it is the product of sexual recombination between two gametes, the sperm contributing the paternal genome and the egg providing the maternal genome. The point in time when the egg and sperm fuse together to be woven into a new plant marks the ontogeny of the species. The phase of ontogeny concerned with the progressive division of the zygote to fabricate the embryo is known as embryogenesis. Triggered by fertilization, embryogenesis ranks as one of the most marvelous of all natural phenomena involving growth, differentiation, cell specialization and tissue formation. Simple though these processes may sound, embryogenesis is no doubt complex as the cells of the embryo go through the same biochemical and physiological transformations as other living cells. Our present ontogenetic concepts of embryogenesis have been given a new twist by the discovery that somatic cells of many phanerogams and pollen grains of certain angiosperms can display with a high degree of fidelity an embryogenic type of development leading to the formation of plants in full multicellularity, sexuality and structure. Embryogenic episodes from somatic cells and pollen grains are known as somatic embryogenesis and pollen embryogenesis, respectively. To avoid semantic confusion, embryogenesis from the zygote is nowadays referred to as zygotic embryogenesis; for the same reason, the term embryo is reserved to designate the product of fusion of the egg and sperm, while embryo-like structures generated from other cells of the plant, commonly referred to as embryoids previously, are now generally called somatic embryos.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Johansen, D. A., Plant Embryology. Embryogeny of the Spermatophyta, Chronica Botanica Co., Waltham, 1950.

    Google Scholar 

  2. Maheshwari, P., An Introduction to the Embryology of Angiosperms, McGraw-Hill Book Co., New York, 1950.

    Google Scholar 

  3. Gifford, E.M., and Foster, A.S., Morphology and Evolution of Vascular Plants, 3ed., W.H. Freeman & Co., New York, 1988.

    Google Scholar 

  4. Singh, H., Embryology of Gymnosperms (Handbuch der Pflanzenanatomie, Band 10, Teil 2), Gebrüder Borntraeger, Berlin, 1978.

    Google Scholar 

  5. Chamberlain, C.J., Gymnosperms: Structure and Evolution, Chicago University Press, Chicago, 1935.

    Google Scholar 

  6. Rao, L.N., Life history of Cycas circinalis L. II. Fertilization, embryogeny and germination of the seed, J. Indian Bot. Soc., 42, 319, 1963.

    Google Scholar 

  7. Brough, P., and Taylor, M.H., An investigation of the life cycle of Macrozamia spiralis Miq., Proc. Linn. Soc. NSW, 65, 494, 1940.

    Google Scholar 

  8. Bryan, G.S., The cellular proembryo of Zamia and its cap cells. Amer. J. Bot., 39, 433, 1952.

    Google Scholar 

  9. Roy Chowdhury, C., The embryogeny of conifers: A review, Phytomorphology, 12, 313, 1962.

    Google Scholar 

  10. Dogra, P.D., Morphology, development and nomenclature of conifer embryo, Phytomorphology, 28, 307, 1978.

    Google Scholar 

  11. Lehmann-Baerts, M., Études sur les Gnetales. XII. Ovule, gametophyte femelle et embryogenèse chez Ephedra distachya L., Cellule, 67, 51, 1967.

    Google Scholar 

  12. Maheshwari, P., and Vasil, V., Gnetum, Council of Scientific & Industrial Research, New Delhi, 1961.

    Google Scholar 

  13. Martens, P., Les Gnétophytes (Handbuch der Pflanzenanatomie, Band 12, Teil 2), Gebrüder Borntraeger, Berlin, 1971.

    Google Scholar 

  14. Martens, P., and Waterkeyn, L., Études sur les Gnétales. XIII. Recherches sur Welwitschia mirabilis. V. Évolution ovulaire et embryogenèse, Cellule, 70, 163, 1974.

    Google Scholar 

  15. Natesh, S., and Rau, M.A., The embryo, in Embryology of Angiosperms, Johri, B.M., Ed., Springer-Verlag, Berlin, 1984, Chapter 8.

    Google Scholar 

  16. Jones, H.A., Pollination and life history studies of lettuce (Lactuca sativa), Hilgardia, 2, 425, 1927.

    CAS  Google Scholar 

  17. Souèges, R., Développement de l’embryon chez le Saginaprocumbens L., Bull. Soc. Bot. Fr., 71, 590, 1924.

    Google Scholar 

  18. Souèges, R., Embryogénie des Saxifragacées. Développement de l’embryon chez le Saxífraga granulata L., CR. Acad. Sei. Paris, 202, 240, 1936.

    Google Scholar 

  19. Olson, A.R., Postfertilization changes in ovules of Monotropa uniflora L. (Monotropaceae), Amer. J. Bot., 78, 99, 1991.

    Google Scholar 

  20. Tohda, H., Development of the embryo of Pogonia (Orchidaceae), Sei. Rep. Tohoku Univ. Fourth Ser. (Biol.), 37, 89, 1974.

    Google Scholar 

  21. Crété, P., Embryo, in Recent Advances in the Embryology of Angiosperms, Maheshwari, P., Ed., International Society of Plant Morphologists, Delhi, 1963, Chapter 7.

    Google Scholar 

  22. Yakovlev, M.S., and Yoffe, M.D., On some peculiar features in the embryogeny of Paeonia L., Phytomorphology, 1, 74, 1957.

    Google Scholar 

  23. Cave, M.S., Arnott, H.J., and Cook, S.A., Embryogeny in the California peonies with reference to their taxonomic position. Amer. J. Bot., 48, 397, 1961.

    Google Scholar 

  24. Carniel, K., Über die Embryobildung in der Gattung Paeonia, Österr. Bot. Z., 114, 4, 1967.

    Google Scholar 

  25. Schaffner, M., The embryology of the Shepherd’s Purse, Ohio Naturl., 7, 1, 1906.

    Google Scholar 

  26. Souèges, R., Les premières divisions de l’oeuf et les différenciation du suspenseur chez le Capsella bursa-pastoris Moench. (1), Ann. Sei. Naturl. X Bot., 1, 1, 1919.

    Google Scholar 

  27. Marsden, M.P.F., and Meinke, D.W., Abnormal development of the suspensor in an embryo-lethal mutant of Arabidopsis thaliana, Amer. J. Bot., 72, 1801, 1985.

    Google Scholar 

  28. Swamy, B.G.L., Embryogenesis in Cheirostylis flabellata, Phytomorphology, 29, 199, 1979.

    Google Scholar 

  29. Swamy, B.G.L., and Lakshmanan, K.K., The origin of the epicotylary meristem and cotyledon in Halophila ovata Gaudich, Ann. Bot., 26, 243, 1962.

    Google Scholar 

  30. Swamy, B.G.L., and Lakshmanan, K.K., Contributions to the embryology of the Najadaceae, J. Indian Bot. Soc., 41, 422, 1962.

    Google Scholar 

  31. Guignard, J.-L., The development of cotyledon and shoot apex in monocotyledons, Can. J. Bot., 62, 1316, 1984.

    Google Scholar 

  32. Ba, L.T., Cavé, G., Henry, M., and Guignard, J., Embryogénie des Potomogetonacées. Étude en microscopie électronique à balayage de l’origine du cotylédon chez Potomogeton lucens L., CR. Acad. Sei. Paris, 286D, 1351, 1978.

    Google Scholar 

  33. Swamy, B.G.L., Embryogenesis in Sagittaria sagittaefolia, Phytomorphology, 30, 204, 1980.

    Google Scholar 

  34. Batygina, T.B., On the possibility of separation of a new type of embryogenesis in angiospermae, Rev. Cytol. Biol. Vég., 32, 335, 1969.

    Google Scholar 

  35. Randolph, L.F., Developmental morphology of the caryopsis in maize, J. Agrie. Res., 53, 881, 1936.

    Google Scholar 

  36. Olson, A.R., Seed morphology of Monotropa uniflora L. (Ericaceae), Amer. J. Bot., 67, 968, 1980.

    Google Scholar 

  37. Arekal, G.D., and Ramaswamy, S.N., Embryology of Burmanniapusilla (Wall, ex Miers) Thw. and its taxonomic status, Beitr. Biol. Pflanzen, 49, 35, 1973.

    Google Scholar 

  38. Arditti, J., Aspects of the physiology of orchids, Adv. Bot. Res., 7, 421, 1979.

    CAS  Google Scholar 

  39. Rangaswamy, N.S., Morphogenesis of seed germination in angiosperms, Phytomorphology, P. Maheshwari Mem. Vol., 17, 477, 1967.

    Google Scholar 

  40. Okonkwo, S.N.C., and Raghavan, V., Studies on the germination of seeds of the root parasites, Aleetra vogelii and Strigagesnerioides. I. Anatomical changes in the embryos, Amer. J. Bot., 69, 1636, 1982.

    Google Scholar 

  41. Ramaswamy, S.N., Swamy, B.G.L., and Govindappa, D.A., From zygote to seedling in Erioeaulon robusto-brownianum Ruhl. (Eriocaulaceae), Beitr. Biol. Pflanzen, 55, 179, 1981.

    Google Scholar 

  42. Ramaswamy, S.N., and Arekal, G.D., Embryology of Erioeaulon xeranthemum Mart. (Eriocaulaceae), Acta Bot. Neerl., 31, 41, 1982.

    Google Scholar 

  43. Doyle, J., and Looby, W.J., Embryogeny in Saxegothaea and its relation to other podocarps, Sei. Proc. Roy. Dublin Soc., 22NS, 127, 1939.

    Google Scholar 

  44. Schopf, J.M., The embryology of Larix, Illinois Biol. Monogr., 19, 1, 1943.

    Google Scholar 

  45. Hakansson, A., Seed development in Picea abies and Pinus sylvestris, M edd. Stat. Skogsforskinst., 46, 1, 1956.

    Google Scholar 

  46. Sharma, K.K., and Thorpe, T.A., Unpublished observations.

    Google Scholar 

  47. Schulz, P., and Jensen, W.A., Capsella embryogenesis: The suspensor and the basal cell, Protoplasma, 67, 139, 1969.

    Google Scholar 

  48. Schnepf, E., and Nagl, W., Über einige Strukturbesonderheiten der Suspensorzellen von Phaseolus vulgaris, Protoplasma, 69, 133, 1970.

    Google Scholar 

  49. Marinos, N.G., Embryogenesis of the pea (Pisum sativum). I. The cytological environment of the developing embryo, Protoplasma, 70, 261, 1970.

    Google Scholar 

  50. Newcomb, W., and Fowke, L.C., Stellaria media embryogenesis: The development and ultrastructure of the suspensor, Can. J. Bot., 52, 607, 1974.

    Google Scholar 

  51. Simoncioli, C., Ultrastructural characteristics of “Diplotaxis erucoides (L.) DC” suspensor, Gior. Bot. Ital., 108, 175, 1974.

    Google Scholar 

  52. Yeung, E.C., and Clutter, M.E., Embryogeny of Phaseolus coccineus: The ultrastructure and development of the suspensor, Can. J. Bot., 57, 120, 1979.

    Google Scholar 

  53. Hu, S., Zhu, C., and Zee, S.Y., Transfer cells in suspensor and endosperm during early embryogeny of Vigna sinensis, Acta Bot. Sinica, 25, 1, 1983.

    Google Scholar 

  54. Sangduen, N., Kreitner, G.L., and Sorensen, E.L., Light and electron microscopy of embryo development in perennial and annual Medicago species, Can. J. Bot., 61, 837, 1983.

    Google Scholar 

  55. Prabhakar, K., and Vijayaraghavan, M.R., Histochemistry and ultrastructure of suspensor cells in Alyssum maritimum, Cytologia, 48, 389, 1983.

    Google Scholar 

  56. Bohdanowicz, J., Alisma embryogenesis: The development and ultrastructure of the suspensor, Protoplasma, 137, 71, 1987.

    Google Scholar 

  57. Yeung, E.C., Embryogeny of Phaseolus: The role of the suspensor, Z. Pflanzenphysiol, 96, 17, 1980.

    Google Scholar 

  58. Nagl, W., Translocation of putrescine in the ovule, suspensor and embryo of Phaseolus coccineus, J. Plant Physiol, 136, 587, 1990.

    CAS  Google Scholar 

  59. Vijayaraghavan, M.M., and Prabhakar, K., The endosperm, in Embryology of Angiosperms, Johri, B.M., Ed., Springer-Verlag, Berlin, 1984, Chapter 7.

    Google Scholar 

  60. List, A. Jr., and Steward, F.C., The nucellus, embryo sac, endosperm, and embryo of Aesculus and their interdependence during growth, Ann. Bot., 29, 1, 1965.

    Google Scholar 

  61. Newcomb, W., The development of the embryo sac of sunflower Helianthus annuus after fertilization, Can. J. Bot., 51, 879, 1973.

    Google Scholar 

  62. Singh, A.P., and Mogensen, H.L., Fine structure of the zygote and early embryo in Quercus gambelii, Amer. J. Bot., 62, 105, 1975.

    Google Scholar 

  63. Raghavan, V., Experimental Embryogenesis in Vascular Plants, Academic Press, London, 1976.

    Google Scholar 

  64. Newcomb, W., and Steeves, T.A., Helianthus annuus embryogenesis: Embryo sac wall projections before and after fertilization, Bot. Gaz., 132, 367, 1971.

    Google Scholar 

  65. Schulz, P., and Jensen, W.A., Cotton embryogenesis: The early development of the free nuclear endosperm, Amer. J. Bot., 64, 384, 1977.

    Google Scholar 

  66. Newcomb, W., The development of cells in the coenocytic endosperm of the African blood lily Haemanthus katherinae, Can. J. Bot., 56, 483, 1978.

    Google Scholar 

  67. Tilton, V.R., Wilcox, L.W., and Palmer, R.G., Postfertilization wandlabrinthe formation and function in the central cell of soybean, Glycine max (L.) Merr. (Leguminosae), Bot. Gaz., 145, 334, 1984.

    Google Scholar 

  68. Folsom, M.W., and Cass, D.D., Changes in transfer cell distribution in the ovule of soybean after fertilization. Can. J. Bot., 64, 965, 1986.

    Google Scholar 

  69. Düte, R.R., Peterson, C.M., and Rushing, A.E., Ultrastructural changes of the egg apparatus associated with fertilization and proembryo development of soybean, Glycine max, Ann. Bot., 64, 123, 1989.

    Google Scholar 

  70. Jones, T.J., and Rost, T.L., Histochemistry and ultrastructure of rice (Oryza sativa) zygotic embryogenesis, Amer. J. Bot., 76, 504, 1989.

    Google Scholar 

  71. Norstog, K., Nucellus during early embryogeny in barley: Fine structure, Bot. Gaz., 135, 97, 1974.

    Google Scholar 

  72. Spurr, A.R., Histogenesis and organization of the embryo in Pinus strobus L., Amer. J. Bot., 36, 629, 1949.

    Google Scholar 

  73. Sterling, C., Proembryo and early embryogeny in Taxus cuspidata, Bull. Torrey Bot. Cl., 76, 116, 1948.

    Google Scholar 

  74. Allen, G.S., Embryogeny and the development of the apical meristems of Pseudotsuga. III. Development of the apical meristems, Amer. J. Bot., 34, 204, 1947.

    Google Scholar 

  75. Schulz, R., and Jensen, W.A., Capsella embryogenesis: The early embryo, J. Ultrastr. Res., 22, 376, 1968.

    CAS  Google Scholar 

  76. Bruck, D.K., and Walker, D.B., Cell determination during embryogenesis in Citrus jambhiri. I. Ontogeny of the epidermis, Bot. Gaz., 146, 188, 1985.

    Google Scholar 

  77. Bruck, D.K., and Walker, D.B., Cell determination during embryogenesis in Citrus jambhiri. II. Epidermal differentiation as one-time event, Amer. J. Bot., 72, 1602, 1985.

    Google Scholar 

  78. Bruck, D.K., and Walker, D.B., Cell determination during embryogenesis in Citrus jambhiri. III. Graft formation and nonformation in embryonic tissues, Can. J. Bot., 64, 2057, 1986.

    Google Scholar 

  79. Miller, H.A., and Wetmore, R.H., Studies in the developmental anatomy of Phlox drummondii Hook. I. The embryo, Amer. J. Bot., 32, 588, 1945.

    Google Scholar 

  80. Buell, K.M. Developmental morphology in Dianthus. I. Structure of the pistil and seed development, Amer. J. Bot., 39, 194, 1952.

    Google Scholar 

  81. Swamy, B.G.L., and Padmanabhan, D., Embryogenesis in Sphenoclea zeylanica, Proc. Indian Acad. Sei., 54B, 169, 1961.

    Google Scholar 

  82. Kaplan, D.R., Seed development in Downingia, Phytomorphology, 19, 253, 1969.

    Google Scholar 

  83. Ramji, M.V., Histology of growth with regard to embryos and apical meristems in some angiosperms. I. Embryogeny of Stellaria media, Phytomorphology, 25, 131, 1975.

    Google Scholar 

  84. Nast, C., The embryogeny and seedling morphology of “Juglans regia” L., Lilloa, 6,163,1941.

    Google Scholar 

  85. Reeve, R.M., Late embryogeny and histogenesis in Pisum, Amer. J. Bot., 35, 591, 1948.

    Google Scholar 

  86. Mahlberg, P.G., Embryogenesis and histogenesis in Nerium oleander L. I. Organization of primary meristematic tissues, Phytomorphology, 10, 118, 1960.

    Google Scholar 

  87. Hanawa, J., Late embryogeny and histogenesis in Sesamum indieum L., Bot. Mag. Tokyo, 73, 369, 1960.

    Google Scholar 

  88. Balfour, E., The development of the vascular system in Maeropiper exeelsum Forst. I. The embryo and the seedling, Phytomorphology, 1, 354, 1957.

    Google Scholar 

  89. Juncosa, A.M., Embryogenesis and seedling development in Cassipourea elliptiea (Sw.) Poir. (Rhizophoraceae), Amer. J. Bot., 71, 170, 1984.

    Google Scholar 

  90. Juncosa, A.M., Embryogenesis and developmental morphology of the seedling in Bruguiera exaristata Ding Hou (Rhizophoraceae), Amer. J. Bot., 71, 180, 1984.

    Google Scholar 

  91. Juncosa, A.M., Developmental morphology of the embryo and seedling of Rhizophora mangle L. (Rhizophoraceae), Amer. J. Bot., 69, 1599, 1982.

    Google Scholar 

  92. Dauphiné, A., and Rivière, S., Sur la présence de tubes criblés dans des embryons de graines non germées, C.R. Acad. Sei. Paris, 211, 359, 1940.

    Google Scholar 

  93. Sachs, T., The control of the patterned differentiation of vascular tissues, Adv. Bot. Res., 9, 151, 1981.

    Google Scholar 

  94. Sterling, C., Embryogeny in the lima bean, Bull. Torrey Bot. Cl., 82, 325, 1955.

    Google Scholar 

  95. Rondet, P., L’organogènse au cors l’embryogenèse chez Alyssum maritimum Lamk., C.R. Acad. Sei. Paris, 255, 2278, 1962.

    CAS  Google Scholar 

  96. Vallade, J., Structure et fonctionnement du meristémè lors de la formation de la jeune racine primaire chez un Petunia hybrida hört., C.R. Acad. Sei. Paris, 274D, 1027, 1972.

    Google Scholar 

  97. Clowes, F.A.L., Origin of the quiescent centre in Zea mays, New Phytol., 80, 409, 1978.

    Google Scholar 

  98. Clowes, F.A.L., Origin of quiescence at the root pole of pea embryos, Ann. Bot., 42, 1237, 1978.

    Google Scholar 

  99. Raghavan, V., Origin of the quiescent center in the root of Capsella bursa-pastoris (L.) Medik., Planta, 181, 62, 1990.

    Google Scholar 

  100. Jensen, W.A., Cell development during plant embryogenesis, Brookhaven Symp. Biol., 16,179, 1964.

    PubMed  CAS  Google Scholar 

  101. D’Alascio-Deschamps, R., Le sac embryonnaire du lin après la fécondation, Botaniste, 50, 273, 1972.

    Google Scholar 

  102. Vallade, J., Données cytologiques sur la proembryogenèse du Petunia’, intérêt pour une interprétation morphogénétique du développement embryonnaire, Bull. Soc. Bot. Fr. Actual Bot., 127, 19, 1980.

    Google Scholar 

  103. van Lammeren, A.A.M., Early events during embryogenesis in Zea mays L., Acta Soc. Bot. Pol., 50, 289, 1981.

    Google Scholar 

  104. Olson, A.R., and Cass, D.D., Changes in megagametophyte structure in Papaver nudicaule L. (Papaveraceae) following in vitro placental pollination, Amer. J. Bot., 68, 1333, 1981.

    Google Scholar 

  105. Jensen, W.A., Cotton embryogenesis: The zygote, Planta, 79, 346, 1968.

    Google Scholar 

  106. Diboll, A.G., Fine structural development of the megagametophyte of Zea mays following fertilization, Amer. J. Bot., 55, 797, 1968.

    Google Scholar 

  107. Cocucci, A., and Jensen, W.A., Orchid embryology: Megagametophyte of Epidendrum scutella following fertilization, Amer. J. Bot., 56, 629, 1969.

    Google Scholar 

  108. Deschamps, R., Premiers stades du développement de l’embryon et de l’albumen du lin: Étude au microscope électronique, Rev. Cytol. Biol. Vég., 32, 379, 169.

    Google Scholar 

  109. D’Alascio-Deschamps, R., Embryologie du Linum catharticum L. Le zygote: étude ultrastructurale, Bull. Soc. Bot. Fr. Lett. Bot., 128, 269, 1981.

    Google Scholar 

  110. Raghavan, V., Spatial distribution of mRNA during pre-fertilization ovule development in Capsella bursa-pastoris, Sex. Plant Reprod., 3, 170, 1990.

    Google Scholar 

  111. Alvarez, M.R., and Sagawa, Y., A histochemical study of embryo development in Vanda (Orchidaceae), Caryologia, 18, 251, 1965.

    Google Scholar 

  112. Pritchard, H.N., A cytochemical study of embryo development in Stellaria media, Amer. J. Bot., 51, 472, 1964.

    CAS  Google Scholar 

  113. Norstog, K., Early development of the barley embryo: Fine structure, Amer. J. Bot., 59, 123, 1972

    Google Scholar 

  114. Scharpé, A., and van Parijs, R., The formation of polyploid cells in ripening cotyledons of Pisum sativum L. in relation to ribosome and protein synthesis, J. Exp. Bot., 24, 216, 1973.

    Google Scholar 

  115. Smith, D.L., Nucleic acid, protein, and starch synthesis in developing cotyledons of Pisum arvense L., Ann. Bot., 37, 795, 1973.

    CAS  Google Scholar 

  116. Millerd, A., and Whitfeld, P.R., Deoxyribonucleic acid and ribonucleic acid synthesis during the cell expansion phase of cotyledon development in Vicia faba L., Plant Physiol., 51, 1005, 1973

    PubMed  CAS  Google Scholar 

  117. Walbot, V., and Dure, L.S., III. Developmental biochemistry of cotton seed embryogenesis and germination. VII. Characterization of the cotton genome, J. Mol. Biol., 101, 503, 1976.

    PubMed  CAS  Google Scholar 

  118. Wheeler, C.T., and Boulter, D., Nucleic acids of developing seeds of Vicia faba L., J. Exp. Bot., 18, 229, 1967.

    CAS  Google Scholar 

  119. Raghavan, V., Embryogenesis in Angiosperms, A Developmental and Experimental Study, Cambridge University Press, New York, 1986.

    Google Scholar 

  120. Walbot, V., Brady, T., Clutter, M., and Sussex, I., Macromolecular synthesis during plant embryogeny: Rates of RNA synthesis in Phaseolus coccineus embryos and suspensors, Develop. Biol., 29, 104, 1972.

    PubMed  CAS  Google Scholar 

  121. Sussex, I., Clutter, M., Walbot, V., and Brady, T., Biosynthetic activity of the suspensor of Phaseolus coccineus, Caryologia Suppl, 25, 261, 1973.

    Google Scholar 

  122. Walbot, V., RNA metabolism during embryo development and germination of Phaseolus vulgaris, Develop. Biol, 26, 369, 1971.

    PubMed  CAS  Google Scholar 

  123. Beevers, L., and Poulson, R., Protein synthesis in cotyledons of Pisum sativum L. I. Changes in cell-free amino acid incorporation capacity during seed development and maturation, Plant Physiol, 49, 476, 1972.

    PubMed  CAS  Google Scholar 

  124. Nagl, W., Endopolyploidy and Polyteny in Differentiation and Evolution, North-Holland Publishing Co., Amsterdam, 1978.

    Google Scholar 

  125. Brady, T., Feulgen cytophotometric determination of the DNA content of the embryo proper and suspensor cells of Phaseolus coccineus, Cell Diffn., 2, 65, 1973.

    CAS  Google Scholar 

  126. Corsi, G., Renzoni, G.C., and Viegi, L., A DNA cytophotometric investigation on the suspensor of Eruca sativa Miller, Caryologia, 26, 531, 1973.

    CAS  Google Scholar 

  127. Nagl, W., Die Riesenchromosomen von Phaseolus coccineus L.: Baueigentümlichkeiten, Strukturmodifikationen, zusätzliche Nukleolen und Vergleich mit den mitotischen Chromosomen, Osten. Bot. Z., 114, 171, 1967.

    Google Scholar 

  128. Nagl, W., Banded polytene chromosomes in the legume Phaseolus vulgaris, Nature, 221, 70, 1969.

    PubMed  CAS  Google Scholar 

  129. Nagl, W., Puffing of polytene chromosomes in a plant (Phaseolus vulgaris), Naturwissenschaften, 56, 221, 1969.

    PubMed  CAS  Google Scholar 

  130. Tagliasacchi, A.M., Forino, L.M.C., Cionini, P.G., Cavallini, A., Durante, M., Cremonini, R., and Avanzi, S., Different structure of polytene chromosomes of Phaseolus coccineus suspensors during early embryogenesis. 3. Chromosome pair VI, Protoplasma, 122, 98, 1984.

    Google Scholar 

  131. Alpi, A., Tognoni, F., and D’Amato, F., Growth regulator levels in embryo and suspensor of Phaseolus coccineus at two stages of development, Planta, 127, 153, 1975.

    CAS  Google Scholar 

  132. Przybyllok, T., and Nagl, W., Auxin concentration in the embryo and suspensors of Tropaeolum majus, as determined by mass fragmentation (single ion detection), Z. Pflanzenphysiol, 84, 463, 1977.

    CAS  Google Scholar 

  133. Picciarelli, P., Alpi, A., Pistelli, L., and Scalet, M., Gibberellin-like activity in suspensors of Tropaeolum majus L. and Cytisus laburnum L., Planta, 162, 566, 1984.

    CAS  Google Scholar 

  134. Lorenzi, R., Bennici, A., Cionini, P.G., Alpi, A., and D’Amato, F., Embryo-suspensor relations in Phaseolus coccineus: Cytokinins during seed development, Planta, 143, 59, 1978.

    CAS  Google Scholar 

  135. Perata, P., Picciarelli, P., and Alpi, A., Pattern of variations in abscisic acid content in suspensors, embryos, and integuments of developing Phaseolus coccineus seeds, Plant Physiol, 94, 1776, 1990.

    PubMed  CAS  Google Scholar 

  136. Cionini, P.G., Bennici, A., Alpi, A. and D’Amato, F., Suspensor, gibberellin and in vitro development of Phaseolus coccineus embryos, Planta, 131, 115, 1976.

    CAS  Google Scholar 

  137. Bennici, A., Cionini, P.G., and D’Amato, F., Callus formation from the suspensor of Phaseolus coccineus in hormone-free medium: A cytological and DNA cytophotometric study, Protoplasma, 89, 251, 1976.

    Google Scholar 

  138. Yeung, E.C., and Sussex, I.M., Embryogeny of Phaseolus coccineus: The suspensor and the growth of the embryo-proper in vitro, Z. Pflanzenphysiol, 91, 423, 1979.

    CAS  Google Scholar 

  139. Gayler, K.R., and Sykes, G.E., ß-conglycinins in developing soybean seeds, Plant Physiol., 67, 958, 1981.

    PubMed  CAS  Google Scholar 

  140. Meinke, D.W., Chen, J., and Beachy, R.N., Expression of storage-protein genes during soybean seed development, Planta, 153, 130, 1981.

    CAS  Google Scholar 

  141. Millerd, A., and Spencer, D., Changes in RNA-synthesizing activity and template activity in nuclei from cotyledons of developing pea seeds, Austr. J. Plant Physiol., 1, 331, 1974.

    CAS  Google Scholar 

  142. Millerd, A., Simon, M., and Stern, H., Legumin synthesis in developing cotyledons of Vicia faba L., Plant Physiol., 48, 419, 1971.

    PubMed  CAS  Google Scholar 

  143. Gatehouse, J.A., Evans, I.M., Bown, D., Croy, R.R.D., and Boulter, D., Control of storage-protein synthesis during seed development in pea (Pisum sativum L.), Biochem. J., 208, 119, 1982.

    PubMed  CAS  Google Scholar 

  144. Sun, S.M., Mutschier, M.A., Bliss, F.A., and Hall, T.C., Protein synthesis and accumulation in bean cotyledons during growth, Plant Physiol., 61, 918, 1978.

    PubMed  CAS  Google Scholar 

  145. Dure, L., III, and Chlan, C, Developmental biochemistry of cotton seed embryogenesis and germination. XII. Purification and properties of principal storage proteins, Plant Physiol, 68, 180, 1981.

    PubMed  CAS  Google Scholar 

  146. Crouch, M.L., and Sussex, I.M., Development and storage-protein synthesis in Brassica napus L. embryos in vivo and in vitro, Planta, 153, 64, 1981.

    CAS  Google Scholar 

  147. This, P., Goffner, P.D., Raynal, M., Chartier, M., and Delseny, M., Characterization of major storage proteins of sunflower and their accumulation, Plant Physiol Biochem., 26, 125, 1988.

    CAS  Google Scholar 

  148. Chen, L.-J., and Luthe, D.S., Analysis of proteins from embryogenic and non-embryogenic rice (Oryza sativa L.) calli. Plant Sei., 48, 181, 1987.

    CAS  Google Scholar 

  149. Chandra Sekhar, K.N., and DeMason, D.A., Quantitative ultrastructure and protein composition of date palm (Phoenix dactylifera) seeds: A comparative study of endosperm vs. embryo, Amer. J. Bot., 75, 323, 1988.

    Google Scholar 

  150. Chandra Sekhar, K.N., and DeMason, D.A., A comparison of endosperm and embryo proteins of the palm Washingtonia filifera, Amer. J. Bot., 75, 338, 1988.

    Google Scholar 

  151. Gifford, D.J., An electrophoretic analysis of the seed proteins from Pinus monticola and eight other species of pine, Can. J. Bot., 66, 1808, 1988.

    CAS  Google Scholar 

  152. Misra, S., and Green, M.J., Developmental gene expression in conifer embryogenesis and germination. I. Seed proteins and protein body composition of mature embryo and the megagametophyte of white spruce (Picea glauca [Moench] Voss.), Plant Sei., 68, 163, 1990.

    CAS  Google Scholar 

  153. Hakman, I., Stabel, P., Engström, P., and Eriksson, T., Storage protein accumulation during zygotic and somatic embryo development in Picea abies (Norway spruce), Physiol Plantarum, 80, 441, 1990.

    CAS  Google Scholar 

  154. Roberts, D.R., Flinn, B.S., Webb, D.T., Webster, F.B., and Sutton, B.C.S., Characterization of immature embryos of interior spruce by SDS-PAGE and microscopy in relation to their competence for somatic embryogenesis, Plant Cell Rep., 8, 285, 1989.

    CAS  Google Scholar 

  155. Dodd, M.C., van Staden, J., and Smith, M.T., Seed development in Podocarpus henkeln An ultrastructural and biochemical study, Ann. Bot., 64, 297, 1989.

    Google Scholar 

  156. Higgins, T.J.Y., Synthesis and regulation of major proteins in seeds. Ann. Rev. Plant Physiol, 35, 191, 1984.

    CAS  Google Scholar 

  157. Dure, L., Ill, Embryogenesis and gene expression during seed formation, Oxford Surv. Plant Mol. Cell Biol, 2, 179, 1985.

    CAS  Google Scholar 

  158. Casey, R., Domoney, C., and Ellis, N., Legume storage proteins and their genes, Oxford Surv. Plant Mol. Cell Biol, 3, 1, 1986.

    CAS  Google Scholar 

  159. Goldberg, R.B., Barker, S.J., and Perez-Grau, L., Regulation of gene expression during plant embryogenesis, Cell, 56, 149, 1989.

    PubMed  CAS  Google Scholar 

  160. Whitmore, F.W., and Kriebel, H.B., Expression of a gene in Pinus strobus ovules associated with fertilization and early embryo development, Can. J. For. Res., 17, 408, 1987.

    Google Scholar 

  161. Battaglia, E., Apomixis Battaglia, xxx in Recent Advances in the Embryology of Angiosperms, Maheshwari, P., Ed., International Society of Plant Morphologists, Delhi, 1963, Chapter 8.

    Google Scholar 

  162. Lacadena, J., Spontaneous and induced parthenogenesis and androgenesis, in Haploids in Higher Plants. Advances and Potential, Kasha, K.J., Ed., University of Guelph, Guelph, 1974, pp. 13–32.

    Google Scholar 

  163. Kasha, K.J., and Kao, K.N., High frequency haploid production in barley (Hordeum vulgare L.), Nature, 225, 874, 1970.

    PubMed  CAS  Google Scholar 

  164. Puri, P., In vitro culture of floral organs of an apomict, Aerva javanica (Brum. F.) Spreng, Phytomorphology, 14, 564, 1964.

    Google Scholar 

  165. Yang, H.Y., and Zhou, C., In vitro induction of haploid plants from unpollinated ovaries and ovules. Theor. Appl. Genet. 63, 97, 1982.

    Google Scholar 

  166. Nagato, Y., Incorporation of 3H-uridine and 3H-leucine during early embryogenesis of rice and barley in caryopsis culture. Plant Cell Physiol., 20, 765, 1979.

    CAS  Google Scholar 

  167. Meinke, D.W., Embryo-lethal mutants and the study of plant embryo development, Oxford Surv. Plant Mol. Cell Biol., 3, 122, 1986.

    Google Scholar 

  168. Sheridan, W.F., and Clark, J.K., Maize embryogeny: A promising experimental system, Trends Genet., 3, 3, 1987.

    Google Scholar 

  169. Racchi, M.L., Gavazzi, G., Monti, D., and Manitto, P., An analysis of the nutritional requirements of the pro mutant in Zea mays, Plant Sei. Lett., 13, 357, 1978.

    CAS  Google Scholar 

  170. Sheridan, W.F., and Neuffer, M.G., Defective kernel mutants of maize. II. Morphological and embryo culture studies, Genetics, 95, 945, 1980.

    PubMed  CAS  Google Scholar 

  171. Karssen, C.M., Brinkhorst-van der Swan, D.L.C. Breekland, A.E. Breekland, and Koornneef, M., Induction of dormancy during seed development by endogenous abscisic acid: Studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh., Planta, 157, 158, 1983.

    CAS  Google Scholar 

  172. Schneider, T., Dinkins, R., Robinson, K., Shellhammer, J., and Meinke, D.W., An embryo-lethal mutant of Arabidopsis thaliana is a biotin auxotroph, Develop. Biol., 131, 161, 1989.

    PubMed  CAS  Google Scholar 

  173. Goldberg, R.B., Hoschek, G., Ditta, G.S., and Breidenbach, R.W., Developmental regulation of cloned superabundant embryo mRNAs in soybean, Develop. Biol., 83, 218, 1981.

    PubMed  CAS  Google Scholar 

  174. Goldberg, R.B., Hoschek, G., and Vodkin, L.O., An insertion sequence blocks the expression of a soybean lectin gene, Cell 33, 465, 1983.

    PubMed  CAS  Google Scholar 

  175. Walling, L., Drews, G.N., and Goldberg, R.B., Transcriptional and post-transcriptional regulation of soybean seed protein mRNA levels, Proc. Natl. Acad. Sei. USA, 83, 2123, 1986.

    CAS  Google Scholar 

  176. Galau, G.A., and Dure, L., Ill, Developmental biochemistry of cotton seed embryogenesis and germination: Changing messenger ribonucleic acid populations as shown by reciprocal heterologous complementary deoxyribonucleic acid-messenger ribonucleic acid hybridization, Biochemistry, 20, 4169, 1981.

    PubMed  CAS  Google Scholar 

  177. Dure, L., III, Greenway, S.C., and Galau, G.A., Developmental biochemistry of cottonseed embryogenesis and germination: Changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis, Biochemistry, 20, 4162, 1981.

    PubMed  CAS  Google Scholar 

  178. Galau, G.A., and Hughes, D.W., Coordinate accumulation of homeologous transcripts of seven cotton Lea gene families during embryogenesis and germination, Develop. Biol., 123, 213, 1987.

    PubMed  CAS  Google Scholar 

  179. Hughes, D.W., and Galau, G.A., Temporally modular gene expression during cotyledon development, Genes Develop., 3, 358, 1989.

    PubMed  CAS  Google Scholar 

  180. Galau, G.A., Hughes, D.W., and Dure, L., Ill, Abscisic acid induction of cloned late embryogenesis-abundant (Lea) mRNAs, Plant Mol. Biol., 1, 155, 1986.

    Google Scholar 

  181. Galau, G.A., Bijaisoradat, N., and Hughes, D.W., Accumulation kinetics of cotton late embryogenesis-abundant mRNAs and storage protein mRNAs: Coordinate regulation during embryogenesis and the role of abscisic acid, Develop. Biol., 123, 198, 1987.

    PubMed  CAS  Google Scholar 

  182. Pang, P.P., Pruitt, R.E., and Meyerowitz, E.M., Molecular cloning, genomic organization, expression and evolution of 12S seed storage protein genes of Arabidopsis thaliana, Plant Mol. Biol., 11, 805, 1988.

    CAS  Google Scholar 

  183. Raynal, M., Depigny, D., Cooke, R., and Delseny, M., Characterization of a radish nuclear gene expressed during late seed maturation, Plant Physiol., 91, 829, 1989.

    PubMed  CAS  Google Scholar 

  184. Ishibashi, N., and Minamikawa, T., Molecular cloning and characterization of stored mRNA in cotyledons of Vigna unguiculata, Plant Cell Physiol., 31, 39, 1990.

    CAS  Google Scholar 

  185. Borroto, K.E., and Dure, L., Ill, The expression of chloroplast genes during cotton embryogenesis, Plant Mol. Biol., 7, 105, 1986.

    CAS  Google Scholar 

  186. Medford, J.I., and Sussex, I.M., Regulation of chlorophyll and Rubisco levels in embryonic cotyledons of Phaseolus vulgaris, Planta, 179, 309, 1989.

    CAS  Google Scholar 

  187. Finkelstein, R.R., Tenbarge, K.M., Shumway, J.E., and Crouch, M.L., Role of ABA in maturation of rapeseed embryos, Plant Physiol, 78, 630, 1985.

    PubMed  CAS  Google Scholar 

  188. Williamson, J.D., and Quatrano, R.S., ABA-regulation of two classes of embryo-specific sequences in mature wheat embryos, Plant Physiol, 86, 208, 1988.

    PubMed  CAS  Google Scholar 

  189. Bray, E.A., and Beachy, R.N., Regulation by ABA of /3-conglycinin expression in cultured developing soybean cotyledons, Plant Physiol, 79, 746, 1985.

    PubMed  CAS  Google Scholar 

  190. Eisenberg, A.J., and Mascarenhas, J.P., Abscisic acid and the regulation of synthesis of specific seed proteins and their messenger RNAs during culture of soybean embryos, Planta, 166, 505, 1985.

    CAS  Google Scholar 

  191. Mundy, J., Hejgaard, J., Hansen, A., Hallgren, L., Jorgensen, K.G., and Munck, L., Differential synthesis in vitro of barley aleurone and starchy endosperm proteins, Plant Physiol, 81, 630, 1986.

    PubMed  CAS  Google Scholar 

  192. Olsen, O.-A., Jakobsen, K.S., and Schmelzer, E., Development of barley aleurone cells: Temporal and spatial patterns of accumulation of cell-specific mRNAs, Planta, 181,462,1990.

    CAS  Google Scholar 

  193. Goday, A., Sánchez-Martinez, D., Gómez, J., Puigdomènech, P., and Pagès, M., Gene expression in developing Zea mays embryos: Regulation by abscisic acid of a highly phosphorylated 23- to 25-kD group of proteins, Plant Physiol, 88, 564, 1988.

    PubMed  CAS  Google Scholar 

  194. Goffner, D., This, P., and Delseny, M., Effects of abscisic acid and osmotica on helianthinin gene expression in sunflower cotyledons in vitro, Plant Sei, 66, 211, 1990.

    CAS  Google Scholar 

  195. Triplett, B.A., and Quatrano, R.S., Timing, localization, and control of wheat germ agglutinin synthesis in developing wheat embryos, Develop. Biol, 91, 491, 1982.

    PubMed  CAS  Google Scholar 

  196. Mansfield, M.A., and Raikhel, N.V., Abscisic acid enhances the transcription of wheat-germ agglutinin without altering its tissue-specific expression, Planta, 180, 548, 1990.

    CAS  Google Scholar 

  197. Stinissen, H.M., Peumans, W.J., and De Langhe, E., Abscisic acid promotes lectin biosynthesis in developing and germinating rice embryos, Plant Cell Rep., 3, 55, 1984.

    CAS  Google Scholar 

  198. Raghavan, V., and Olmedilla, A., Spatial patterns of histone mRNA expression during grain development in rice, Cell Diffn. Develop., 27, 183, 1989.

    CAS  Google Scholar 

  199. Ramachandran, C., and Raghavan, V., Intracellular localization of glutelin mRNA during grain development in rice, J. Exp. Bot., 41, 393, 1990.

    CAS  Google Scholar 

  200. Perez-Grau, L., and Goldberg, R.B., Soybean seed protein genes are regulated spatially during embryogenesis, Plant Cell, 1, 1095, 1989.

    PubMed  CAS  Google Scholar 

  201. Fernandez, D.E., Turner, F.R., and Crouch, M.L., In situ localization of storage protein mRNAs in developing meristems of Brassica napus embryos, Development, 111, 299, 1991.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Raghavan, V., Sharma, K.K. (1995). Zygotic Embryogenesis in Gymnosperms and Angiosperms. In: Thorpe, T.A. (eds) In Vitro Embryogenesis in Plants. Current Plant Science and Biotechnology in Agriculture, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0485-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0485-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4217-8

  • Online ISBN: 978-94-011-0485-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics