Skip to main content

How do earthworms affect microfloral and faunal community diversity?

  • Chapter
The Significance and Regulation of Soil Biodiversity

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 63))

Abstract

Much of the work regarding earthworm effects on other organisms has focused on the functional significance of microbial-earthworm interactions, and little is known on the effects of earthworms on microfloral and faunal diversity. Earthworms can affect soil microflora and fauna populations directly and indirectly by three main mechanisms: (1) comminution, burrowing and casting; (2) grazing; (3) dispersal. These activities change the soil’s physico-chemical and biological status and may cause drastic shifts in the density, diversity, structure and activity of microbial and faunal communities within the drilosphere. Certain organisms and species may be enhanced, reduced or not be affected at all depending on their ability to adapt to the particular conditions of different earthworm drilospheres. A large host of factors (including CaCO3, enzymes, mucus and antimicrobial substances) influence the ability of preferentially or randomly ingested organisms to survive (or not) passage through the earthworm gut, and their resultant capacity to recover and proliferate (or not) in earthworm casts. Small organisms, particularly microflora and microfauna, with limited ability to move within the soil, may benefit from the (comparatively) long ranging movements of earthworms. Microflora and smaller fauna appear to be particularly sensitive to earthworm activities, and priming effects enhancing nutrient release, particularly in casts, are common. Larger fauna such as microarthropods, enchytraeids and Isopods may be enhanced under some conditions (e.g., in earthworm middens), but in other cases earthworm activity may lead to a decrease in their populations due to competition for food (microbes and organic materials), and spatial and temporal changes in food abundance. Nevertheless, considering the presently available data, the beneficial interactions of earthworms and microflora and fauna appear to far outweigh the potential negative effects. However, much is still unknown regarding the interactions of earthworms of different ecological categories on the diversity and function of microfloral and faunal communities, and much more interdisciplinary research is needed to assess the potential role of earthworms in regulating the diversity of microflora and fauna in soil systems and the potentially beneficial or harmful effects this regulation may have on ecosystem function and plant growth in different ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldag K and Graff O 1975 N-fraktitionen in Regenwürmlosung und deren Urprungsboden. Pedobiologia 15, 151–153.

    Google Scholar 

  • Anderson J M 1987 Interactions between invertebrates and microorganisms: Noise or necessity for soil processes? In Ecology of microbial communities. Eds. M Fletcher, T R G Gray and J G Jones. pp 125–145. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Atlavinyté O and Pociené C 1973 The effect of earthworms and their activity on the amount of algae in the soil. Pedobiologia 13, 445–455.

    Google Scholar 

  • Ausmus B S 1977 Regulation of wood decomposition rates by arthropod and annelid populations. In Soil Organisms as Components of Ecosystems. Eds. U Lohm and T Persson. pp 180–192. Ecological Bulletins 25, Stockholm.

    Google Scholar 

  • Bamforth S S 1988 Interactions between protozoa and other organisms. Agric. Ecosyst. Environ. 24, 229–234.

    Article  Google Scholar 

  • Barois I 1987 Interactions entre les vers de terre (Oligochaeta) tropicaux géophages et la microflore pour l’exploitation de la matiere organique du sol. Travaux des chercheurs de la station de Lamto (Côte d’Ivoire) 7.152 p.

    Google Scholar 

  • Barois I 1992 Mucus production and microbial activity in the gut of two species of Arnynthas (Megascolecidae) from cold and warm tropical climates. Soil Biol. Biochem. 24, 1507–1510.

    Article  Google Scholar 

  • Barois I and Lavelle P 1986 Changes in respiration rate and some physicoshemical properties of a tropical soil during transit through Pontoscolex corethrums (Glossoscolecidae, Oligochaeta). Soil Biol. Biochem. 18, 539–541.

    Article  Google Scholar 

  • Barois I, Verdier B, Kaiser P, Mariotti A, Rangel P and Lavelle P 1987 Influence of the tropical earthworm Pontoscolex corethrums (Glossoscolecidae) on the fixation and mineralization of nitrogen. In On Earthworms. Eds. A M B Pagliai and P Omodeo. pp 151–158. Mucchi Editore, Modena, Italy.

    Google Scholar 

  • Bassalik K 1913 Über Silikatzersetzung durch Bodenbakterien. Z. GaerungsPhys. 2, 1–32.

    CAS  Google Scholar 

  • Bayoumi B M 1978 Significance of the microhabitat on the distribution of oribatid mites in oak-hornbeam mixed forest. Opusc. Zool. 15, 51–59.

    Google Scholar 

  • Beare M H, Parmelee R W, Hendrix P F, Cheng W, Coleman D C and Crossley D A Jr 1992 Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems. Ecol. Monogr. 62, 564–591.

    Article  Google Scholar 

  • Beare M H, Coleman D C, Crossley D A Jr, Hendrix P F and Odum E P 1995 A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. Plant and Soil 170.

    Google Scholar 

  • Bhatnagar T 1975 Lombriciens et humification: Un aspect noveau de l’incorporation microbienne d’azote induite par les vers de terre. In Humification et Biodégradation. Eds. G Kilbertius, Reisinger, A Mourey and J A C da Fonseca. pp 169–182. Pierron, Sar-reguemines, France.

    Google Scholar 

  • Blackshaw R P 1990 Studies on Artioposthia triangulata (Dendy) (Tricladia: Terricola), a predator of earthworms. Ann. Appl. Biol. 116, 169–176.

    Article  Google Scholar 

  • Bouché M B 1977 Strategies lombriciennes. In Soil Organisms as Components of Ecosystems. Eds. U Lohm and T Persson. pp 122–132. Ecological Bulletins 25, Stockholm.

    Google Scholar 

  • Contreras E 1980 Studies on the intestinal actinomycete flora of Eisenia lucens (Annelida, Oligochaeta). Pedobiologia 20, 411–416.

    Google Scholar 

  • Cooke A 1983 The effects of fungi on food selection by Lumbricus terrestris L. In Earthworm Ecology: From Darwin to Vermicul-ture. Ed. J E Satchell. pp 365–373. Chapman and Hall, New York.

    Chapter  Google Scholar 

  • Dales R P and Kalaç 1992 Phagocytic defence by the earthworm Eisenia foetida against certain pathogenic bacteria. Comp. Biochem. Physiol. 101A, 487–490.

    Article  Google Scholar 

  • Daniel O and Anderson J M 1992 Microbial biomass and activity in contrasting soil materials after passage through the gut of the earthworm Lumbricus rubellus Hoffmeister. Soil Biol. Biochem. 24, 465–470.

    Article  Google Scholar 

  • Darwin C R 1881 The Formation of Vegetable Mould through the Action of Worms with Observation on their Habits. Murray, London. 298p.

    Google Scholar 

  • Dash M C, Mishra P C and Behera N 1979 Fungal feeding by a tropical earthworm. Trop. Ecol. 20, 9–12.

    Google Scholar 

  • Dash M C, Senapati B K and Mishra C C 1980 Nematode feeding by tropical earthworms. Oikos 34, 322–325.

    Article  Google Scholar 

  • Dash H K, Beura B N and Dash M C 1986 Gut load, transit time, gut microflora and turnover of soil, plant and fungal material by some tropical earthworms. Pedobiologia 29, 13–20.

    Google Scholar 

  • Domsch K H and Banse H J 1972 Mykologische Untersuchungen an Regenwürmexkrementen. Soil Biol. Biochem. 4, 31–38.

    Article  Google Scholar 

  • Doube B M, Ryder M H, Davoren C W and Meyer T 1994a Earthworms: A down-under delivery service for biocontrol agents of root disease. Acta Zool. Fenn. (In press).

    Google Scholar 

  • Doube B M, Ryder M H, Davoren C W and Stephens P M 1994b Enhanced root nodulation of subterranean clover (Trifolium sub-terraneum) by Rhizobium leguminosarium biovar trifola in the presence of the earthworm Aporrectodea trapezoides (Lumbrici-dae). Biol. Fertil. Soils (In press).

    Google Scholar 

  • Dözsa-Farkas K 1978 Die ökologische bedeutung des mikrohabitates für das vorkommen einiger enchytraeiden-arten. Pedobiologia 18, 366–372.

    Google Scholar 

  • Edwards C A and Lofty J R 1977 Biology of Earthworms. 2nd ed. Chapman and Hall, London. 333p.

    Book  Google Scholar 

  • Edwards C A and Lofty J R 1980 Effects of earthworm inoculation upon the root growth of direct drilled cereals. J. Appl. Ecol. 17, 533–543.

    Article  Google Scholar 

  • Edwards C A and Fletcher K E 1988 Interactions between earthworms and microorganisms in organic-matter breakdown. Agric. Ecosyst. Environ. 24, 235–247.

    Article  Google Scholar 

  • Edwards W M, Stupitalo M J, Owens L B and Norton L D 1990 Effects of Lumbricus terrestris L. burrows on hydrology of continuous no-till corn filelds. Geoderma 46, 73–84.

    Article  Google Scholar 

  • Ellenby C 1945 Influence of earthworms on larval emergence in the potato-root eelworm, Heterodra rostochiensis Wollenweber. Ann. Appl. Biol. 31, 332–339.

    Article  Google Scholar 

  • Elliott P W, Knight D and Anderson J M 1990 Denitrification in earthworm casts and soil from pastures under different fertilizer and drainage regimes. Soil Biol. Biochem. 22, 601–605.

    Article  CAS  Google Scholar 

  • Flack F M and Hartenstein R 1984 Growth of the earthworm Eisenia foetida on microorganisms and cellulose. Soil Biol. Biochem. 16, 491–495.

    Article  CAS  Google Scholar 

  • Gange A 1993 Translocation of mycorrhizal fungi by earthworms during early succession. Soil Biol. Biochem. 25, 1021–1026.

    Article  Google Scholar 

  • Gonzalez C L 1990 Determinación de la influencia de Pontoscolex corethrurus (Oligochaeta) sobre las poblaciones microbianas présentes en un sembradio de maiz de la region de Gomez Farias, Tamaulipas. Thesis, Universidad Nacional Autonoma de Mexico, Los Reyes Iztacala, Mexico. 108p.

    Google Scholar 

  • Górny M 1984 Studies on the relationship between enchytraeids and earthworms. In Soil Biology and Conservation of the Biosphere. Vol 2. Ed. J Szegi. pp 769–776. Academiai Kiado, Budapest.

    Google Scholar 

  • Graff O and Makeschin F 1983 Influence of earthworm upon nutrient uptake, yield and protein content of plants. In Proceedings of the International Symposium on Agricultural and Environmental Prospects in Earthworm Farming. Eds. U Tornati and A Grappelli. pp 39–45. Tipolitografia Euromodena, Modena, Italy.

    Google Scholar 

  • Gunnarsson T and Rundgren S 1986 Nematode infestation and hatching failure of lumbricid cocoons in acidified and polluted soils. Pedobiologia 29, 165–173.

    Google Scholar 

  • Hamilton W E and Sillman D Y 1989 Influence of earthworm middens on the distribution of soil microarthropods. Biol. Fertil. Soils 8, 279–284.

    Google Scholar 

  • Hampson M C and Coombes J W 1989 Pathogenesis of Synchytri-um endobioticum VII: Earthworms as vectors of wart disease of potato. Plant and Soil 116, 147–150.

    Article  Google Scholar 

  • Harinikumar K M, Bagyaraj D J and Kale R D 1991 Vesicular arbus-cular mycorrhizal propagules in earthworm cast. In Advances in Management and Conservation of Soil Fauna. Eds. G K Veeresh, D Rajagopal and C A Viraktamath. pp 605–610. Oxford and IBH, New Delhi.

    Google Scholar 

  • Hartenstein F, Hartenstein E and Hartenstein R 1981 Gut load and transit time in the earthworm Eisenia foetida. Pedobiologia 22, 5–20.

    Google Scholar 

  • Hartenstein R and Amico L 1983 Production and carrying capacity for the earthworm Lumbricus terrestris in culture. Soil Biol. Biochem. 15, 51–54.

    Article  Google Scholar 

  • Hassett D J, Bisesi M S and Hartenstein R 1988 Earthworm peroxidase: Distribution, microbicidal action and molecular weight. Soil Biol. Biochem. 20, 887–890.

    Article  CAS  Google Scholar 

  • Haukka J K 1987 Growth and survival of Eisenia fetida (Sav.) (Oligochaeta: Lumbricidae) in relation to temperature, moisture and presence of Enchytraeus albidus (Henle) (Enchytraeidae). Biol. Fertil. Soils 3, 99–102.

    Article  Google Scholar 

  • Hendriksen N B 1991 Gut load and food-retention time in the earthworms Lumbricus festivus and L. castaneus: A field study. Biol. Fertil. Soils 11, 170–173.

    Article  Google Scholar 

  • Hendriksen N B 1994 Effects of detrivore earthworms on dispersal and survival of the bacterium Aeromonas hydrophila. Acta Zool. Fenn. (In press).

    Google Scholar 

  • Henschke R B, Nucken E and Schmidt F R J 1989 Fate and dispersal of recombinant bacteria in a soil microcosm containing the earthworm Lumbricus terrestris. Biol. Fertil. Soils 7, 374–376.

    Article  Google Scholar 

  • Hirst J M and Stedman O J 1962 The epidemiology of apple scab (Venturia inaequalis (Cke.) Wint.). Ann. Appl. Biol. 50, 551–567.

    Article  Google Scholar 

  • Hoffmann J A and Purdy L H 1964 Germination of dwarf bunt teliospores after ingestion by earthworms. Phytopathology 54, 878–879.

    Google Scholar 

  • Hopp H 1973 What every gardner should know about earthworms. Garden Way Publ. Co., Charlotte, Vermont. 39p.

    Google Scholar 

  • Hossein E A, Ravasz K, Zicsi A, Contreras E and Szabó I M 1991 Über das vorkommen und die bedetung von nocardioform acti-nomyceten im darm von regenwürmern. In Advances in Management and Conservation of Soil Fauna. Eds. G K Veeresh, D Rajagopal and C A Viraktamath. pp 585–590. Oxford and IBH, New Delhi.

    Google Scholar 

  • Huss M J 1989 Dispersal of cellular slime molds by two soil invertebrates. Mycologia 81, 677–682.

    Article  Google Scholar 

  • Ingham R E, Trophymow J A, Ingham E R and Coleman D C 1985 Interactions of bacteria, fungi and their nematode grazers: Effects on nutrient cycling and plant growth. Ecol. Monogr. 55, 119–140.

    Article  Google Scholar 

  • Jolly J M, Lappin-Scott H M, Anderson J M and Clegg C D 1993 Scanning electron microscopy of the gut microflora of two earthworms: Lumbricus terrestris and Octolasion cyaneum. Microbial. Ecol. 26, 235–245.

    Article  Google Scholar 

  • Jones K and Wilson R E 1978 The fate of nitrogen fixed by a free-living blue-green alga. In Environmental Role of Nitrogen-fixing Blue-green Algae and Asymbiotic Bacteria. Ed. U Granhall. pp 158–163. Ecological Bulletins 26, Stockholm.

    Google Scholar 

  • Joschko M, Diestel H and Larink O 1989 Assesment of earthworm burrowing efficiency in compacted soil by a combination of morphological and soil physical measurements. Biol. Fertil. Soils 8, 191–196.

    Article  Google Scholar 

  • Judas M 1989 Predator pressure on earthworms: Field experiments in a beechwood. Pedobiologia 33, 339–354.

    Google Scholar 

  • Kennel W 1990 The role of the earthworm Lumbricus terrestris in integrated fruit production. Acta Hort. 285, 149–156.

    Google Scholar 

  • Keogh R G and Christensen M J 1976 Influence of passage through Lumbricus rubellus Hoffmeister earthworms on viability of Pithomyces chartarum. (Berk. and Curt.) M B Ellis spores. N. Z. J. Agric. Res. 19, 255–256.

    Article  Google Scholar 

  • Kirk V M 1981 Earthworm burrows as oviposition sites for western and northern corn rootworms (Diabrotica: Coleoptera). J. Kansas Entom. Soc. 54, 68–74.

    Google Scholar 

  • Kirkham M B 1982 Water and air conductance in soil with earthworms: An electrical-analogue study. Pedobiologia 23, 367–371.

    Google Scholar 

  • Klaasen H L B M, Koopman J P, Poelma F G J and Beynen A C 1992 Intestinal, segmented, filamentous bacteria. FEMS Microbiol. Rev. 88, 165–180.

    Article  Google Scholar 

  • Kladivko E J, Mackay A and Bradford J M 1986 Earthworms as a factor in the reduction of soil crusting. Soil Sci. Soc. Am. J. 50, 191–196.

    Article  Google Scholar 

  • Kozlovskaya L S and Zhdannikova E N 1961 The combined activity of earthworms and the microflora in forest soils. Doklady Akademii Nauk, SSSR 139, 574–576.

    Google Scholar 

  • Krishnamoorthy R V and Vajranabhaiah S N 1986 Biological activity of earthworm casts: An assesment of plant growth promoter levels in the casts. Proc. Indian Acad. Sci. (Anim. Sci.) 95, 341–351.

    Article  Google Scholar 

  • Kristufek V, Pizl V and Szabo I M 1990 Composition of the intestinal streptomycete community of earthworms (Lumbricidae). In Microbiology in Poecilotherms. Ed. R Lessel. pp 137–140. Elsevier, Amsterdam.

    Google Scholar 

  • Kristufek V, Ravasz K and Pizl V 1992 Changes in density of bacteria and microfungi during gut transit in Lurribricus rubellus and Aporrectodea caliginosa (Oligochaeta:Lumbricidae). Soil Biol. Biochem. 24, 1499–1500.

    Article  Google Scholar 

  • Kristufek V, Ravasz K and Pizl V 1993 Actinomycete communities in earthworm guts and surrounding soil. Pedobiologia 37, 379–384.

    Google Scholar 

  • Lagerlöf J and Lofs-Holmin A 1987 Relationships between earthworms and soil mesofauna during decomposition of crop residues. In Soil Fauna and Soil Fertility. Ed. B R Striganova. pp 377–381. Nauka, Moscow.

    Google Scholar 

  • Laing J E, Heraty J M and Corrigan J E 1986 Leaf burial by the earthworm, Lumbricus terrestris (Oligochaeta: Lumbricidae), as a major factor in the population dynamics of Phyllonoryc-ter blancardella (Lepidoptera: Gracillariidae) and its parasites. Env. Entom. 15, 321–326.

    Google Scholar 

  • Langmaid K K 1964 Some effects of earthworm invasion in virgin Podzols. Can. J. Soil Sci. 44, 34–37.

    Article  Google Scholar 

  • Lavelle P 1981 Stratégies de reproduction chez les vers de terre. Acta Oecologica Oecol. Gener. 2, 117–133.

    Google Scholar 

  • Lavelle P 1987 Interactions, hiérarchies et régulations dans le sol: À la recherche d’une nouvelle approche conceptuelle. Rev. Ecol. Biol. Sol 24, 219–229.

    Google Scholar 

  • Lavelle P 1988 Earthworms and the soil system. Biol. Fertil. Soils 6, 237–251.

    Article  Google Scholar 

  • Lavelle P, Zaidi Z and R Schaeffer 1983 Interactions between earthworms, soil organic matter and microflora in an African savanna soil. In New Trends in Soil Biology. Eds. P Lebrun, H M Andre, A de Medts, C Grégoire-Wibo and G Wauthy. pp 253–259. Dieu-Brichart, Louvain-la-Neuve, Belgium.

    Google Scholar 

  • Lavelle P, Barois I, Cruz I, Fragoso C, Hernandez A, Pineda A and Rangel P 1987 Adaptive strategies of Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta), a peregrine geophagous earthworm of the humid tropics. Biol. Fertil. Soils 5, 188–194.

    Article  Google Scholar 

  • Lavelle P, Barois I, Martin A, Zaidi Z and Schaefer R 1989 Management of earthworm populations in agro-ecosystems: A possible way to maintain soil quality? In Ecology of Arable Land: Perspectives and Challenges. Eds. M Clarholm and L Bergstrom. pp 109–122. Kluwer Academic Publishers, London.

    Chapter  Google Scholar 

  • Lavelle P, Melendez G, Pashanasi B and Schaefer R 1992a Nitrogen mineralization and reorganization in casts of the geophagous tropical earthworm Pontoscolex corethrurus (Glossoscolecidae). Biol. Fertil. Soils 14, 49–53.

    Article  CAS  Google Scholar 

  • Lavelle P, Blanchart E, Martin A, Spain A V and Martin S 1992b Impact of soil fauna on the properties of soils in the humid tropics. In Myths and Science of Soils in the Tropics. Eds. P A Sanchez and R Lal. pp 157–185. SSSA Spec. Publ. 29, Madison, WI.

    Google Scholar 

  • Lavelle P, Blanchart E, Martin A, Martin S, Spain A V, Toutain F, Barois I and Schaefer R 1993 A hierarchical model for decomposition in terrestrial ecosystems: Application to soils of the humid tropics. Biotropica 25, 130–150.

    Article  Google Scholar 

  • Lavelle P, Gilot C, Fragoso C and Pashanasi B 1994 Soil fauna and sustainable land use in the humid tropics. In Soil Resilience and Sustainable Land Use. Eds. D J Greenland and I Szabolcs. pp 291–308. CAB International, Wallingford, UK.

    Google Scholar 

  • Lavelle P, Lattaud C, Trigo D and Barois I 1995 Mutualism and biodiversity in soils. Plant and Soil 170.

    Google Scholar 

  • Lee K E 1983 Soil animals and pedological processes. In Soils: An Australian viewpoint. CSIRO Divison of Soils. pp 629–644. Academic Press, London.

    Google Scholar 

  • Lee K E 1985 Earthworms: Their ecology and relationships with soils and land use. Academic Press, London. 411p.

    Google Scholar 

  • Lee K E and Foster R C 1991 Soil fauna and soil structure. Aust. J. Soil Res. 29, 745–775.

    Article  Google Scholar 

  • Lofty J R 1974 Oligochaetes. In Biology of Plant Litter Decomposition. Vol 2. Eds. C H Dickinson and G J F Pugh. pp 467–488. Academic Press, New York.

    Chapter  Google Scholar 

  • Lopez-Hernandez D, Lavelle P, Fardeau J C and Niño M 1993 Phosphorus transformations in two P-sorption contrasting tropical soils during transit through Pontoscolex corethrurus (Glossoscolecidae: Oligochaeta). Soil Biol. Biochem. 25, 789–792.

    Article  CAS  Google Scholar 

  • Loquet M, Bhatnagar T, Bouché M B and Rouelle J 1977 Essai d’estimation de l’influence écologique des lombrices sur les microorganismes. Pedobiologia 17, 400–417.

    Google Scholar 

  • Loksa I 1978 Mikrohabitate und ihre Bedeutung für die Verteilung der Collembolengemeinschaften in einem Haibuchen-eichenbestand. Opusc. Zool. 15, 93–117.

    Google Scholar 

  • Lussenhop J 1992 Mechanisms of microarthropod-microbial interactions in soil. Adv. Ecol. Res. 23, 1–33.

    Article  Google Scholar 

  • MacDonald D W 1983 Predation on earthworms by terrestrial vertebrates. In Earthworm Ecology: From Darwin to Vermiculture. Ed. J E Satchell. pp 393–414. Chapman and Hall, London.

    Chapter  Google Scholar 

  • Mackay A D and Kladivko E J 1985 Earthworms and the rate of breakdown of soybean and maize residues in soil. Soil Biol. Biochem. 17, 851–857.

    Article  Google Scholar 

  • MacNish G C 1985 Methods of reducing Rhizoctonia bare patch of cereals in western Australia. Plant Pathol. 34, 175–181.

    Article  Google Scholar 

  • Madsen E L and Alexander M 1982 Transport of Rhizobium and Pseudomonas through soil. Soil Sci. Soc. Am. J. 46, 557–560.

    Article  Google Scholar 

  • Máriaglieti K 1979 On the community structure of the gut-microbiota of Eisenia lucens (Annelida, Oligochaeta). Pedobiologia 19, 213–220.

    Google Scholar 

  • Marinissen J C Y and Bok J 1988 Earthworm-ammended soil structure: Its influence on Collembola population in grassland. Pedobiologia 32, 243–252.

    Google Scholar 

  • Martin A 1991 Short-and long-term effects of the endoge-ic earthworm Millsonia anomala (Omodeo) (Megascolecidae, Oligochaeta) of tropical savannas, on soil organic matter. Biol. Fertil. Soils 11, 234–238.

    Article  Google Scholar 

  • Martin A and Marinissen J C Y 1993 Biological and physico-chemical processes in excrements of soil animals. Geoderma 56, 331–347.

    Article  CAS  Google Scholar 

  • Martin A, Cortez J, Barois I and Lavelle P 1987 Les mucus intestinaux de Ver de terre moteur de leurs interactions avec la microflore. Rev. Ecol. Biol. Sol 24, 549–558.

    Google Scholar 

  • Mather J G and Christensen O 1988 Surface movement of earthworms in agricultural land. Pedobiologia 32, 399–405.

    Google Scholar 

  • Mather J G and Christensen O 1992 Surface migration of earthworms in grassland. Pedobiologia 36, 51–57.

    Google Scholar 

  • McIlveen W D and Cole Jr H 1976 Spore dispersal of Endogonadacae by worms, ants, wasps, and birds. Can. J. Bot. 54, 1486–1489.

    Article  Google Scholar 

  • Melouk H A and Horner C E 1976 Recovery of Verticillium dahli-ae pathogenic to mints from castings of earthworms. Am. Phy-topathol. Soc. Proc. 3, 265.

    Google Scholar 

  • Miles H B 1963 Soil protozoa and earthworm nutrition. Soil Sci. 95, 407–409.

    Article  Google Scholar 

  • Mills J T 1976 Inter relationships between microorganisms, nematodes, insects and other invertebrates affecting their role as pests. In Integrated Control of Soil Pests. pp 20–32. WPRS Bull 3, Wageningen, The Netherlands.

    Google Scholar 

  • Moody S A, Piearce T G, Ineson P, Dighton J, Robinson C H and Frankland J C 1992 Dispersal of wheatstraw fungi by earthworms. In Soil organisms and Soil Health: Program and Abstracts of the XI International Colloquium on Soil Zoology. Eds. J Haimi and P L Pitkanen. p 83. ISSS, Jyväskylä, Finland.

    Google Scholar 

  • Morgan M H 1988 The role of microorganisms in the nutrition of Eisenia foetida. In Earthworms in Waste and Environmental Management. Eds. C A Edwards and E F Neuhauser. pp 71–82. SPB Academic Publishing, The Hague, The Netherlands.

    Google Scholar 

  • Morris D E and Pivnick K A 1991 Earthworm mucus stimulates oviposition in a predatory fly (Diptera: Anthomyiidae). J. Chem. Ecol. 17, 2045–2052.

    Article  Google Scholar 

  • Murray P M, Feest A and Madelin M F 1985 The number of viable myxomycete cells in the alimentary tracts of earthworms and in earthworm casts. Bot. J. Linn. Soc. 91, 359–366.

    Article  Google Scholar 

  • Nekrasova K A and Aleksandrova I V 1982 Participation of collem-bolas and earthworms in the transformation of algal organic matter. Sov. Soil Sci. 14, 31–39.

    Google Scholar 

  • Nekrasova K A, Kozlovskaya L S, Domraceva L I and ShtinaÉ A 1976 The influence of invertebrates on the development of algae. Pedobiologia 16, 286–297.

    Google Scholar 

  • Nguyen K B and Smart G C Jr. 1991 Pathogenicity of Steinernema scapterisci to selected invertebrates. J. Nematol. 23, 7–11.

    PubMed  CAS  Google Scholar 

  • Niklas J and Kennel W 1981 The role of the earthworm, Lumbricus terrestris (L.) in removing sources of phytopathogenic fungi in orchards. Gartenbauwissenchaft 46, 138–142.

    Google Scholar 

  • Parle J N 1963a Microorganisms in the intestines of earthworms. J. Gen. Microbiol. 31, 1–11.

    Google Scholar 

  • Parle J N 1963b A microbiological study of earthworm casts. J. Gen. Microbiol. 31, 13–22.

    CAS  Google Scholar 

  • Pederson J C and Hendriksen N B 1993 Effect of passage through the intestinal tract of detrivore earthworms (Lumbricus spp.) on the number of selected Gram-negative and total bacteria. Biol. Fertil. Soils 16, 227–232.

    Article  Google Scholar 

  • Piearce T G 1972 The calcium relations of selected Lumbricidae. J. Anim.Ecol.41, 167-188.

    Google Scholar 

  • Piearce T G 1978 Gut contents of some lumbricid earthworms. Pedobiologia 18, 153–157.

    Google Scholar 

  • Piearce T G and Phillips M J 1980 The fate of ciliates in the earthworm gut: An in vitro study. Microbial. Ecol. 5, 313–320.

    Article  Google Scholar 

  • Poinar Jr G O 1978 Associations between nematodes (Nematoda) and Oligochaetes (Annelida). Proc. Helm. Soc. Wash. 45, 202–210.

    Google Scholar 

  • Ponge J F 1991 Succession of fungi and fauna during decomposition of needles in a small area of Scots pine litter. Plant and Soil 138, 99–113.

    Article  Google Scholar 

  • Ravasz K, Zicsi A, Contreras E, Szell V and Szabo I M 1986 Über die darmaktinomyceten-gemeinschaften einiger regenwürm-arten. Opusc. Zool. 22, 85–102.

    Google Scholar 

  • Ravasz K, Contreras E and Mariaglieti K 1987a The influence of the composition of food materials on the gut flora of Eisenia lucens (Waga 1857). In Soil Fauna and Soil Fertility. Ed. B R Striganova. pp 443–445. Nauka, Moscow.

    Google Scholar 

  • Ravasz K, Zicsi A, Contreras E and Szabo I M 1987b Comparative bacteriological analyses of the faecal matter of different earthworm species. In On Earthworms. Eds. A M B Pagliai and P Omodeo. pp 389–399. Mucchi Editore, Modena, Italy.

    Google Scholar 

  • Raw F 1962 Studies of earthworm populations in orchards I: Leaf burial in apple orchards. Ann. Appl. Biol. 50, 389–404.

    Article  Google Scholar 

  • Reddell P and Spain A V 1991a Earthworms as vectors of viable propagules of mycorrhizal fungi. Soil Biol. Biochem. 23, 767–774.

    Article  Google Scholar 

  • Reddell P and Spain A V 1991b Transmission of infective Frankia (Actinomycetales) propagules in casts of the endogeic earthworm Pontoscolex corethrurus (Oligochaeta: Glossoscolecidae). Soil Biol. Biochem. 23, 775–778.

    Article  Google Scholar 

  • Roessner J 1981 Einfluss von Regenwürmern auf phytoparasitäre Nematoden. Nematologica 27, 339–347.

    Article  Google Scholar 

  • Roessner J 1986 Untersuchungen zur Reduktion von Nematoden im Bodem durch Regenwüermer. Med. Fac. Landbouww. Rijksuniv. Gent 51/3b, 1311–1318.

    Google Scholar 

  • Roth C H and Joschko M 1991 A note on the reduction of runoff from crusted soils by earthworm burrows and artificial channels. Z. Plfanzenernahr. Bodenkd. 154, 101–105.

    Article  Google Scholar 

  • Rouelle J 1983 Introduction of amoebae and Rhizobium japonicum into the gut of Eisenia fetida (Sav.) and Lumbricus terrestris L. In Earthworm Ecology: From Darwin to Vermiculture. Ed. J E Satchell. pp 375–381. Chapman and Hall, New York.

    Chapter  Google Scholar 

  • Rouelle J 1984 Relations vers de terre-microorganismes: Applications á la lombriculture (nutrition, maladies, élimination des germes pathogènes). In L’Elevage du ver de terreau: Le point sur les recherches en cours. pp 22–39. ITAVI, Paris.

    Google Scholar 

  • Satchell J E and Martin K 1984 Phosphatase activity in earthworm faeces. Soil Biol. Biochem. 16, 191–194.

    Article  CAS  Google Scholar 

  • Scheu S 1987 Microbial activity and nutrient dynamics in earthworm casts. Biol. Fertil. Soils 5, 230–234.

    Article  Google Scholar 

  • Scheu S 1990 Changes in microbial nutrient status during secondary succession and its modification by earthworms. Oecologia 84, 351–358.

    Google Scholar 

  • Scheu S 1992 Automated measurement of the respiratory response of soil microcompartments: Active microbial biomass in earthworm faeces. Soil Biol. Biochem. 24, 1113–1118.

    Article  Google Scholar 

  • Scheu S 1993 Litter microflora-soil macrofauna interactions in lignin decomposition: A laboratory experiment with l4C-labelled lignin. Soil Biol. Biochem. 25, 1703–1711.

    Article  CAS  Google Scholar 

  • Segun A O 1978 Monocystid gregarine parasites of Nigerian earthworms. J. Protozool. 25, 157–162.

    Google Scholar 

  • Senapati B K 1992 Biotic interactions between soil nematodes and earthworms. Soil Biol. Biochem. 24, 1441–1444.

    Article  Google Scholar 

  • Shapiro D I, Beny E C and Lewis L C 1993 Interactions between nematodes and earthworms: Enhanced dispersal of Steinernema carpocapsae. J. Nematol. 25, 189–192.

    PubMed  CAS  Google Scholar 

  • Shaw C and Pawluk S 1986 Faecal microbiology of Octolasion tyr-taeum, Aporrectodea turgida and Lumbricus terrestris and its relation to the carbon budgets of three artificial soils. Pedobiologia 29, 377–389.

    Google Scholar 

  • Stupitalo M J and Protz R 1988 Factors affecting the dispersability of clay in worm casts. Soil Sci. Soc. Am. J. 52, 764–769.

    Article  Google Scholar 

  • ShtinaÉ A, Kozlovskaya L S and Nekrasova K A 1981 Relations of soil oligochaetes and algae. Sov. J. Ecol. 12, 44–48.

    Google Scholar 

  • Spain A V, Lavelle P and Mariotti A 1992 Stimulation of plant growth by tropical earthworms. Soil Biol. Biochem. 24, 1629–1633.

    Article  Google Scholar 

  • Spiers G A, Gagnon D, Nason G E, Packee E C and Lousier J D 1986 Effects and importance of indigenous earthworms on decomposition and nutrient cycling in coastal forest systems. Can J. For. Res. 16, 983–989.

    Article  Google Scholar 

  • Stephens P M, Davoren C W, Ryder M H and Doube B M 1993a Influence of the lumbricid earthworm Aporrectodea trapezoides on the colonization of wheat roots by Pseudomonas corrugata strain 2140R in soil. Soil Biol. Biochem. 25, 1719–1724.

    Article  Google Scholar 

  • Stephens P M, Davoren C W, Doube B M, Ryder M H, Benger A M and Neate S M 1993b Reduced severity of Rhizoctonia solarti disease on wheat seedlings associated with the presence of the earthworm Aporrectodea trapezoides (Lumbricidae). Soil Biol. Biochem. 25, 1477–1484.

    Article  Google Scholar 

  • Stephens P M, Davoren C W, Ryder M H and Doube B M 1994 Influence of the earthworm Aporrectodea trapezoides (Lumbricidae) on the colonization of alfalfa (Medicago sativa L.) roots by Rhizobium meliloti strain L5-30R and the survival of Rhizobium meliloti L5-30R in soil. Biol. Fertil. Soils (In press).

    Google Scholar 

  • Stockdill J 1982 Effects of introduced earthworms on the productivity of New Zealand pastures. Pedobiologia 24, 29–35.

    Google Scholar 

  • Striganova B R, Marfenina O E and Ponomarenko V A 1989a Some aspects of the effect of earthworms on soil fungi. Biol. Bull. Acad. Sci. USSR 15, 460–463.

    Google Scholar 

  • Striganova B R, Derimova T D P, Mazantseva G P and Tiunov A V 1989b Effects of earthworms on biological nitrogen fixation in the soil. Biol. Bull. Acad. Sci. USSR 15, 560–565.

    Google Scholar 

  • Swift M J, Heal O W and Anderson J M 1979 Decomposition in terrestrial ecosystems. Blackwell Scientific, Oxford. 372p.

    Google Scholar 

  • Szabo I M, Prauser H, Bodnar G, Chu T L, Ravasz K, Hossein E A and Mariaglietti K 1990 The indiginous intestinal bacteria of soil arthropods and worms. In Microbiology in Poecilotherms. Ed. R Leser. pp 109–117. Elsevier, Amsterdam.

    Google Scholar 

  • Szlavecz K 1985 The effect of microhabitats on the leaf litter decomposition and on the distribution of soil animals. Hol. Ecol. 8, 33–38.

    Google Scholar 

  • Thompson L, Thomas C D, Radley J M A, Williamson S and Lawton J H 1993 The effects of earthworms and snails in a simple plant community. Oecologia 95, 171–178.

    Article  Google Scholar 

  • Tiwari S C and Mishra R R 1993 Fungal abundance and diversity in earthworm casts and in uningested soil. Biol. Fertil. Soils 16, 131–134.

    Article  Google Scholar 

  • Tiwari S C, Tiwari B K and Mishra R R 1989 Microbial populations, enzyme activities and nitrogen-phosphorus-potassium enrichment of earthworm casts and in the surrounding soil of a pineapple plantation. Biol. Fertil. Soils 8, 178–182.

    Article  Google Scholar 

  • Tiwari S C, Tiwari B K and Mishra R R 1990 Microfungal species associated with the gut content and casts of Drawida assamensis Gates. Proc. Indian Acad. Sci. (Plant Sci.) 100, 379–382.

    Google Scholar 

  • Tomati U, Grappelli A and Galli E 1988 The hormone-like effect of earthworm casts on plant growth. Biol. Fertil. Soils 5, 288–294.

    Article  CAS  Google Scholar 

  • Trigo D and Lavelle P 1993 Changes in respiration rate and some physicochemical properties of soil during gut transit through Allolobophora molleri (Lumbricidae, Oligochaeta). Biol. Fertil. Soils 15, 185–188.

    Article  Google Scholar 

  • Trigo D, Martin A and Lavelle P 1994 Evidence of a mutualistic type of digestion in the temperate earthworm Allolobophora molleri. Acta Zool. Fenn. (In press).

    Google Scholar 

  • Urbásek F and Pizl V 1991 Activity of digestive enzymes in the gut of five earthworm species (Oligochaeta; Lumbricidae). Rev. Ecol. Biol. Sol 28, 461–468.

    Google Scholar 

  • Valembois P, Roch R and Lasségues M 1986 Antibacterial molecules in annelids. In Immunity in Invertebrates: Cells, Molecules, and Defense Reactions. Ed. M Brehelin. pp 74–93. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Van Rhee J A 1963 Earthworm activity and the breakdown of organic matter in agricultural soils. In Soil Organisms. Eds. J Doeksen and J van der Drift. pp 55–59. North Holland Publ. Co., Amsterdam.

    Google Scholar 

  • Visser S 1985 Role of the soil invertebrates in determining the composition of soil microbial communities. In Ecological Interactions in Soil. Eds. A Fitter, D Atkinson, D J Read and M B Usher. pp 297–317. Blackwell Scientific, Oxford.

    Google Scholar 

  • Wolters V and Joergensen R G 1992 Microbial carbon turnover in beech forest soils worked by Aporrectodea caliginosa (Savigny) (Oligochaeta: Lumbricidae). Soil Biol. Biochem. 24, 171–177.

    Article  Google Scholar 

  • Ydrogo H F B 1994 Effecto de las lombrices de tierra (Pontoscolex corethrurus) en las micorrizas vesiculo arbusculares (M.V. A.) en la etapa de crecimento de araza (Eugenia stipitata), achiote (Bixa orellana), pijuayo (Bactris gasipaes), en suelos ultisoles de Yurimaguas. Thesis, Universidad Nacional de San Martin, Tarapoto, Peru. 34p.

    Google Scholar 

  • Yeates G W 1980 Influence of earthworms on soil nematode populations. J. Nematol. 12, 242.

    Google Scholar 

  • Yeates G W 1981 Soil nematode populations depressed in the presence of earthworms. Pedobiologia 22, 191–195.

    Google Scholar 

  • Zhang B G, Rouland C, Lattaud C and Lavelle P 1993 Activity and origin of digestive enzymes in gut of the tropical earthworm Pontoscolex corethrurus. Eur. J. Soil Biol. 29, 7–11.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. P. Collins G. P. Robertson M. J. Klug

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brown, G.G. (1995). How do earthworms affect microfloral and faunal community diversity?. In: Collins, H.P., Robertson, G.P., Klug, M.J. (eds) The Significance and Regulation of Soil Biodiversity. Developments in Plant and Soil Sciences, vol 63. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0479-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0479-1_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4214-7

  • Online ISBN: 978-94-011-0479-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics