Skip to main content

Noise-Induced Transitions and Chemical Rate Laws

  • Chapter
New Trends in Kramers’ Reaction Rate Theory

Part of the book series: Understanding Chemical Reactivity ((UCRE,volume 11))

  • 243 Accesses

Abstract

Transition rates in dissipative dynamical systems subject to external noise are investigated. The focus is on systems whose underlying deterministic dynamics supports bistable attracting states. Both simple one-variable systems governed by motion in a bistable potential, as well as more complicated systems in two and higher dimensions involving bistability between other types of attractors, are considered. If external noise is applied to such systems, transitions between the noisy analogs of the deterministic attractors may take place. The conditions under which such transitions may be described by first-order phenomenological rate laws are determined and the transition rates are computed. Transitions between two steady states and between a steady state and a limit cycle are considered in some detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Nicolis and I. Prigogine, Self-Organization in Nonlinear Systems, Wiley, New York (1977)

    Google Scholar 

  2. .P. Bergé, Y. Pomeau, and C. Vidal, Order within Chaos, Wiley, New York (1984);

    Google Scholar 

  3. S.K. Scott, Chemical Chaos, Clarendon Press, Oxford (1991).

    Google Scholar 

  4. W. Horsthemke and R. Lefever, Noise Induced Transitions. Theory and Applications in Physics, Chemistry and Biology, Springer, Berlin (1984).

    Google Scholar 

  5. H. Kramers, Physica 7, 284 (1940).

    Article  CAS  Google Scholar 

  6. P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 251 (1990).

    Article  Google Scholar 

  7. F. Moss and P. McClintock (Eds.), Noise in Nonlinear Dynamical Systems, Cambridge University Press, Cambridge (1988).

    Google Scholar 

  8. J. M. Sancho and M. San Miguel, in Noise in Nonlinear Dynamical Systems, F. Moss and P. McClintock (Eds.), Cambridge University Press, Cambridge (1988), Vol. 1, p. 72.

    Google Scholar 

  9. K. Lindenberg, B. J. West, and J. Masoliver, ibid., p. 110.

    Google Scholar 

  10. P. Hänggi, ibid., p. 307.

    Google Scholar 

  11. P. Hänggi and P. Riseborough, Phys. Rev. A 27, 3379 (1983)

    Article  Google Scholar 

  12. C. Van den Broeck and P. Hänggi, Phys. Rev. A 30, 2730 (1984)

    Article  Google Scholar 

  13. V. Balakrishnan, C. van den Broeck, and P. Hänggi, Phys. Rev. A 38, 4213 (1988).

    Article  Google Scholar 

  14. J. M. PorrĂ , J. Masoliver, and K. Lindenberg, Phys. Rev. A 44, 4866 (1991).

    Article  Google Scholar 

  15. J. M. Porrà, J. Masoliver, K. Lindenberg, I. L’Heureux, and R. Kapral, Phys. Rev. A 45, 6092 (1992).

    Article  Google Scholar 

  16. T. Yamamoto, J. Chem. Phys. 33, 281 (1960).

    Article  CAS  Google Scholar 

  17. R. Kapral, J. Chem. Phys. 56, 1842 (1971).

    Article  Google Scholar 

  18. D. Chandler, Modern Statistical Mechanics, Oxford University Press, Oxford (1987);

    Google Scholar 

  19. D. Chandler, J. Chem. Phys. 68, 2959 (1978).

    Article  CAS  Google Scholar 

  20. H. Mori, Prog. Theor. Phys. 33, 423 (1965).

    Article  Google Scholar 

  21. R. Zwanzig, J. Chem. Phys. 33, 1338 (1960)

    Article  CAS  Google Scholar 

  22. R. Zwanzig,Lect. Theor. Phys. 3, 106 (1961).

    Google Scholar 

  23. P. Grigolini and F. Marchesoni, Adv. Chem. Phys. 62, 29 (1985).

    Article  Google Scholar 

  24. P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94, 511 (1954);

    Article  CAS  Google Scholar 

  25. D. Bohm and E. P. Gross, Phys. Rev. 75, 1864 (1949).

    Article  Google Scholar 

  26. C. W. Gardiner, Handbook of Stochastic Methods, Springer-Verlag, New York (1985);

    Google Scholar 

  27. N. G. van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland, New York (1981).

    Google Scholar 

  28. X.-G. Wu and R. Kapral, J. Chem. Phys. 91, 5528 (1989).

    Article  CAS  Google Scholar 

  29. X.-G. Wu, Chem. Phys. Lett. 196, 21 (1992).

    Article  CAS  Google Scholar 

  30. J. A. Montgomery, D. Chandler, and B. Berne, J. Chem. Phys. 70, 4056 (1979);

    Article  CAS  Google Scholar 

  31. J. L. Skinner and P. Wolynes, J. Chem. Phys. 69, 2143 (1978);

    Article  CAS  Google Scholar 

  32. M. Borkovec, J. Straub, and B. Berne, J. Chem. Phys. 85, 146 (1986).

    Article  CAS  Google Scholar 

  33. X.-G. Wu, I. L’Heureux, and R. Kapral, Chem. Phys. Lett. 176, 242 (1991).

    Article  CAS  Google Scholar 

  34. P. Jung and H. Risken,Z. Phys. B 54, 357 (1984).

    Article  Google Scholar 

  35. R. Larson and M. D. Kostin, J. Chem. Phys. 69, 4821 (1978).

    Article  CAS  Google Scholar 

  36. A. J. Irwin, S. J. Fraser, and R. Kapral, Phys. Rev. Lett. 64, 2343 (1990);

    Article  Google Scholar 

  37. S. J. Fraser and R. Kapral, Phys. Rev. A 45, 3412 (1992).

    Article  Google Scholar 

  38. R. Kapral and S. J. Fraser, J. Stat. Phys. 70, 61 (1993).

    Article  Google Scholar 

  39. A. R. Cohen, IRE Trans. Circuit Theory CT-9, 371 (1962)

    Google Scholar 

  40. J. A. McFadden, IRE Trans. on Information Theory IT-5, 174, (1959).

    Article  Google Scholar 

  41. J. M. PorrĂ , J. Masoliver, and K. Lindenberg, Mean First-Passage Times for Systems Driven the Coin-Toss Square Wave (to be published).

    Google Scholar 

  42. P. Erdos, Amer. J. Math. 61, 974 (1939)

    Article  Google Scholar 

  43. R. Salem, Duke Math. J. 11, 103 (1944)

    Article  Google Scholar 

  44. A. M. Garcia, Trans. Amer. Math. Soc. 102, 409 (1962)

    Article  Google Scholar 

  45. J.-P. Kahane, Bull. Soc. Math. France 25, 119 (1971).

    Google Scholar 

  46. S. Karlin, Pacific J. Math. 3, 725 (1953)

    Article  Google Scholar 

  47. J. C. Alexander and J. A. Yorke, Ergod. Th. and Dynam. Sys. 4, 1 (1984).

    Article  Google Scholar 

  48. C. Pisot, Annali di Pisa 7, 205 (1938)

    Google Scholar 

  49. A.T. Vijayaraghavan, Proc. Camb. Phil. Soc. 37, 349 (1941).

    Article  Google Scholar 

  50. J. Stark, Phys. Rev. Lett. 65, 3357 (1990).

    Article  Google Scholar 

  51. I. L’Heureux and R. Kapral, Phys. Lett. A 136, 472 (1989).

    Article  Google Scholar 

  52. R. Lefever and J. W. Turner, Phys. Rev. Lett. 56, 1631 (1986)

    Article  Google Scholar 

  53. K. Lekkas, L. Schimansky-Geier, and H. Engel-Herbert, Z. Phys. B 70, 517 (1988)

    Article  Google Scholar 

  54. V. Altares and G. Nicolis, Phys. Rev. A 37, 3630 (1988).

    Article  Google Scholar 

  55. R. Kapral and E. Celarier, in Noise in Nonlinear Dynamical Systems, F. Moss and P. McClintock (Eds.), Cambridge University Press, Cambridge (1988), Vol. 2, p. 209

    Google Scholar 

  56. E. Celarier and R. Kapral, J. Chem. Phys. 86, 3357, 3366 (1987)

    Article  Google Scholar 

  57. R. Kapral, J. Chim. Phys. 84, 1295 (1987).

    Google Scholar 

  58. V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York (1982)

    Google Scholar 

  59. J. Guckenheimer and P. Holmes, Nonlinear Oscillalions, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York (1983).

    Google Scholar 

  60. B. Gaveau, E. Gudowska-Nowak, R. Kapral, and M. Moreau, Phys. Rev. A 46, 825 (1992).

    Article  Google Scholar 

  61. S. H. Northrup and J. T. Hynes, J. Chem. Phys. 73, 2700 (1980)

    Article  CAS  Google Scholar 

  62. S. H. Northrup and J. T. Hynes, ibid. 68, 3203 (1978)

    CAS  Google Scholar 

  63. S. H. Northrup and J. T. Hynes ibid. 69, 5246 (1978).

    CAS  Google Scholar 

  64. R. J. Field and R. M. Noyes, Faraday Symp. Chem. Soc. 9, 21 (1974);

    Article  Google Scholar 

  65. R. J. Field and R. M. Noyes,J. Chem. Phys. 60, 1877 (1974)

    Article  CAS  Google Scholar 

  66. K. Bar-Eli and R. M. Noyes, J. Chem. Phys. 86, 1927 (1987).

    Article  CAS  Google Scholar 

  67. I. L’Heureux, K. Bar-Eli, and R. Kapral, J. Chem. Phys. 91, 4285 (1989).

    Article  Google Scholar 

  68. K. Kitahara, W. Horsthemke, and R. Lefever, Phys. Lett. A 70, 377 (1979)

    Article  Google Scholar 

  69. J. M. Sancho and M. San Miguel, Prog. Theor. Phys. 69, 1085 (1983)

    Article  Google Scholar 

  70. F. Sagués, M. San Miguel, and J. M. Sancho, Z. Phys. B 55, 269 (1984).

    Article  Google Scholar 

  71. R. Kapral, M. Schell, and S. Fraser, J. Phys. Chem. 86, 2205 (1982).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kapral, R. (1995). Noise-Induced Transitions and Chemical Rate Laws. In: Talkner, P., Hänggi, P. (eds) New Trends in Kramers’ Reaction Rate Theory. Understanding Chemical Reactivity, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0465-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0465-4_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4208-6

  • Online ISBN: 978-94-011-0465-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics