Skip to main content

Recent Developments in the Quantum Mechanical Theory of Chemical Reaction Rates

  • Chapter
New Trends in Kramers’ Reaction Rate Theory

Part of the book series: Understanding Chemical Reactivity ((UCRE,volume 11))

Abstract

As one tries to construct an increasingly rigorous quantum mechanical generalization of classical transition state theory, one that is free of all ‘extraneous’ approximations (e.g., separability of a one dimensional reaction coordinate), one is ultimately driven to the dynamically exact quantum treatment. Though it seems pointless to call this a transition state ‘theory’ (it is in effect a quantum mechanical simulation), it is nevertheless possible using transition state-like ideas to cast a fully rigorous quantum approach in a form that allows one to carry out such calculations without having to solve the complete state-to-state quantum reactive scattering problem. Rigorous calculations for the reactions H + H2 → H2 + H, H + O2 → OH + O, and H + H2O → H2 + OH illustrate this approach. At the semiclassical level, there does exist a version of transition state theory — based on the locally ‘good’ action variables about the saddle point on the potential energy surface — which includes non-separable coupling between all degrees of freedom (including the reaction coordinate) in a unified manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An interesting set of papers by many of the founders of the theory -E. Wigner, M. Polanyi, Evans, Eyring -is in Trans. Faraday Soc. 34, ‘Reaction Kinetics -a General Discussion’, pp. 1–127 (1938)

    Google Scholar 

  2. D. G. Truhlar, W. L. Hase, and J. T. Hynes, J. Phys. Chem. 87, 2664 (1983).

    Article  CAS  Google Scholar 

  3. E. Wigner, Trans. Faraday Soc. 34, 29 (1938).

    Article  CAS  Google Scholar 

  4. P. Pechukas, in Dynamics of Molecular Collisions, Part B, W. H. Miller (Ed.), Modern Theoretical Chemistry, Vol. 2, Plenum, New York, NY (1976), Chapter 6.

    Google Scholar 

  5. T. Seideman and W. H. Miller, J. Chem. Phys. 96, 4412 (1992);

    Article  CAS  Google Scholar 

  6. T. Seideman and W. H. Miller, J. Chem. Phys. 97, 2499 (1992);

    Article  CAS  Google Scholar 

  7. W. H. Miller and T. Seideman, in Time Dependent Quantum Molecular Dynamics: Experiments and Theory, J. Broeckhove (Ed.), NATO ARW;

    Google Scholar 

  8. W. H. Miller, Accts. Chem. Res. 26 174 (1993).

    Article  CAS  Google Scholar 

  9. W. H. Miller, Accts. Chem. Res. 9, 306 (1976).

    Article  CAS  Google Scholar 

  10. J. C. Keck, Adv. Chem. Phys. 13, 85 (1967);

    Article  Google Scholar 

  11. J. Horiuti, Bull. Chem. Soc. Jpn. 13, 210 (1938).

    Article  Google Scholar 

  12. D. G. Truhlar and B. C. Garrett, Accts. Chem. Res. 13, 440 (1980)

    Article  CAS  Google Scholar 

  13. D. G. Truhlar and B. C. Garrett, Ann. Rev. Phys. Chem. 35, 159 (1984).

    Article  CAS  Google Scholar 

  14. F. J. McLafferty and P. Pechukas, J. Chem. Phys. 58, 1622 (1973);

    Article  Google Scholar 

  15. F. J. McLafferty and P. Pechukas, Chem. Phys. Lett. 27, 511 (1974).

    Article  CAS  Google Scholar 

  16. S. Chapman, S. M. Hornstein, and W. H. Miller, W.H., J. Am. Chem. Soc. 97, 892 (1975).

    Article  CAS  Google Scholar 

  17. H. S. Johnston and D. Rapp, J. Amer. Chem. Soc. 83, 1 (1961).

    Article  CAS  Google Scholar 

  18. R. A. Marcus and M. E. Coltrin, J. Chem. Phys. 67, 2609 (1977)

    Article  CAS  Google Scholar 

  19. F. J. McLafferty and P. Pechukas, Chem. Phys. Lett. 27, 511 (1974).

    Article  CAS  Google Scholar 

  20. N. Makri and W. H. Miller, J. Chem. Phys. 91, 4026 (1989).

    Article  CAS  Google Scholar 

  21. T. F. George and W. H. Miller, J. Chem. Phys. 57, 2458 (1972);

    Article  CAS  Google Scholar 

  22. S. M. Hornstein and W. H. Miller, J. Chem. Phys. 61, 745 (1974).

    Article  CAS  Google Scholar 

  23. W. H. Miller, Faraday Disc. Chem Soc. 62, 40 (1977).

    Article  CAS  Google Scholar 

  24. W. H. Miller, R. Hernandez, N. C. Handy, D. Jayatilaka, and A. Willetts, Chem. Phys. Lett. 172, 62 (1990)

    Article  CAS  Google Scholar 

  25. M. J. Cohen, H. C. Handy, R. Hernandez, and W. H. Miller, Chem. Phys. Lett. 192 407 (1992).

    Article  CAS  Google Scholar 

  26. W. H. Miller, J. Chem. Phys. 62, 1899 (1975).

    Article  CAS  Google Scholar 

  27. R. Hernandez and W. H. Miller, Chem. Phys. Lett. 214, 129 (1993).

    Article  CAS  Google Scholar 

  28. W. H. Miller, J. Chem. Phys. 61, 1823 (1974).

    Article  CAS  Google Scholar 

  29. J. W. Tromp and W. H. Miller, J. Phys. Chem. 90, 3482 (1986).

    Article  CAS  Google Scholar 

  30. R. G. Newton, Scattering Theory of Waves and Particles, Springer-Verlag, Berlin (1982), pp. 176ff.

    Google Scholar 

  31. A. Goldberg and B. W. Shore, J. Phys. B 11, 3339 (1978)

    Article  CAS  Google Scholar 

  32. C. Leforestier and R. E. Wyatt, J. Chem. Phys. 78, 2334 (1983);

    Article  CAS  Google Scholar 

  33. R. Kosloff and D. Kosloff, J. Comput. Phys. 63, 363 (1986);

    Article  Google Scholar 

  34. D. Neuhauser, and M. Baer, J. Chem. Phys. 90, 4351 (1989).

    Article  Google Scholar 

  35. J. V. Lill, G. A. Parker, and J. C. Light, J. Chem. Phys. 85, 900 (1986)

    Article  CAS  Google Scholar 

  36. J. T. Muckerman, Chem. Phys. Lett. 173, 200 (1990).

    Article  CAS  Google Scholar 

  37. R. A. Friesner, Chem. Phys. Lett. 116, 39 (1985)

    Article  CAS  Google Scholar 

  38. R. A. Friesner, J. Chem. Phys. 85, 1462 (1986).

    Article  CAS  Google Scholar 

  39. A. C. Peet and W. H. Miller, Chem. Phys. Lett. 149, 257 (1988)

    Article  CAS  Google Scholar 

  40. W. Yang, A. C. Peet, and W. H. Miller, J. Chem. Phys. 91, 7537 (1989).

    Article  CAS  Google Scholar 

  41. N(E) will always increase monotonically with E in a transition state approximation. It is easy to prove this classically, e.g., from Equation (15). If the dividing surface is held fixed as E varies, then from Equation (15) one has \(\frac{d}{{dE}}{{N}_{{TST}}}(E) = {{(2\pi \hbar )}^{{ - (F - 1)}}}\int {dp\prime } \int {dq\prime \delta [{\rm E} - {\rm H}\ddag ],}\) which is clearly positive. Furthermore, if the dividing surface is parameterized and allowed to vary with energy, the above equation still holds because any parameters in the dividing surface are chosen variationally. Thus if the dividing surface (and thus the Hamil-tonian H‡) depend on some parameters c 1, c 2,... = {c k }, then the expression for N TST will depend not only on the energy E but also on these parameters, N TST(E, c 1, c 2,...). The values of the c k ’s are chosen, however, by the variational condition \( 0 = {\partial \over {\partial {c_k}}}{N_{TST}}(E,\{ {c_k}\} ), \)which determines specific values c k (E). Thus the variationally optimized result for the cumulative reaction probability is N TST(E, c 1(E), c 2(E),...) ≡ N TST(E). Then \( {d \over {dE}}{N_{TST}}(E) = {\partial \over {\partial E}}{N_{TST}}(E\{ {c_k}\} ) + \sum\limits_k {{{\partial {N_{TST}}} \over {\partial {c_k}}}} {\rm{ }}{c'_k}(E), \) but the last terms are all zero because of the variational conditions.

    Google Scholar 

  42. D. C. Chatfield, R. S. Friedman, D. G. Truhlar, B. C. Garrett, and D. W. Schwenke, J. Am. Chem. Soc. 113, 486 (1991).

    Article  CAS  Google Scholar 

  43. C. Leforestier and W. H. Miller, J. Chem. Phys. 100, 733 (1994).

    Article  CAS  Google Scholar 

  44. U. Manthe, T. Seideman, and W. H. Miller, J. Chem. Phys. 99, 10078 (1993)

    Article  CAS  Google Scholar 

  45. U. Manthe, T. Seideman, and W. H. Miller, J. Chem. Phys. 101, 4759 (1994)

    Article  CAS  Google Scholar 

  46. U. Manthe and W. H. Miller, J. Chem. Phys. 99, 3411 (1993).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Miller, W.H. (1995). Recent Developments in the Quantum Mechanical Theory of Chemical Reaction Rates. In: Talkner, P., Hänggi, P. (eds) New Trends in Kramers’ Reaction Rate Theory. Understanding Chemical Reactivity, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0465-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0465-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4208-6

  • Online ISBN: 978-94-011-0465-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics