Skip to main content

Bypass Transition and Linear Growth Mechanisms

  • Conference paper
Advances in Turbulence V

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 24))

Abstract

Investigations of the mechanisms underlying bypass transition are presented, and it is shown that a linear growth mechanism is required for energy growth. In shear flows such a mechanism is identified in the rapid transient growth of streaks produced by the three-dimensional lift-up effect. A number of transition scenarios utilizing this transient growth are discussed: Streak growth and breakdown, oblique transition and transition from localized disturbances. It is also demonstrated that the transition scenarios utilizing transient growth give the lowest threshold energies for initial disturbances causing transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • L. Bergström. Optimal growth of small disturbances in pipe poiseuille flow. Phys. Fluids A, 5:2710–2720, 1993.

    Article  ADS  MATH  Google Scholar 

  • S. Berlin, A. Lundbladh, and D. S. Henningson. Spatial simulations of oblique transition. Phys. Fluids, 1994. (Accepted).

    Google Scholar 

  • L. Boberg and U. Brosa. Onset of turbulence in a pipe. Z. Naturforsch., 43a:697–726, 1988.

    Google Scholar 

  • K. S. Breuer and J. H. Haritonidis. The evolution of a localized disturbance in a laminar boundary layer. Part I: Weak disturbances. J. Fluid Mech., 220:569–594, 1990.

    Article  ADS  Google Scholar 

  • K. S. Breuer and T. Kuraishi. Transient growth in two- and three-dimensional boundary layers. Phys. Fluids, 6:1983–1993, 1994.

    Article  ADS  MATH  Google Scholar 

  • K. M. Butler and B. F. Farrell. Three-dimensional optimal perturbations in viscous shear flow.Phys. Fluids A, 4:1637–1650, 1992.

    Article  ADS  Google Scholar 

  • C. L. Chang and M. R. Malik. Non-parallel stability of compressible boundary layers. AIAA Paper 93–2912, 1993.

    Google Scholar 

  • T. Ellingsen and E. Palm. Stability of linear flow. Phys. Fluids, 18:487–488, 1975.

    Article  ADS  MATH  Google Scholar 

  • P. A. Elofsson and P. H. Alfredsson. An experimental investigation of interacting oblique waves in plane poiseuille flow. Bull. Am. Phys. Soc., 38:2221, 1993.

    Google Scholar 

  • B. F. Farrell. Optimal excitation of perturbations in viscous shear flow. Phys. Fluids, 31:2093–2102, 1988.

    Article  ADS  Google Scholar 

  • B. F. Farrell. The initial growth of disturbances in a baroclinic flow. J. Atmos. Sci., 46:1193, 1989.

    Article  ADS  Google Scholar 

  • B. F. Farrell and P. J. Ioannou. Optimal excitation of three dimensional perturbations in viscous constant shear flow. Phys. Fluids A, 5:1390–1400, 1993.

    Article  ADS  MATH  Google Scholar 

  • B. F. Farrell and A. M. Moore. An adjoint method for obtaining the most rapidly growing perturbations to oceanic flows. J. Phys. Ocean., 22:338, 1992.

    Article  ADS  Google Scholar 

  • H. Fasel and A. Thumm. Direct numerical simulation of three-dimensional breakdown in supersonic boundary layer transition. Bull. Am. Phys. Soc., 36:2701, 1991.

    Google Scholar 

  • R. J. Gathmann, M. Si-Ameur, and F. Mathey. Numerical simulations of three-dimensional natural transition in the compressible confined shear layer. Phys. Fluids A, 5:2946–2968, 1993.

    Article  ADS  MATH  Google Scholar 

  • L. H. Gustavsson. Energy growth of three-dimensional disturbances in plane Poiseuille flow. J. Fluid Mech., 224:241–260, 1991.

    Article  ADS  MATH  Google Scholar 

  • D. S. Henningson, A. Lundbladh, and A. V. Johansson. A mechanism for bypass transition from localized disturbances in wall bounded shear flows. J. Fluid Mech., 250:169–207, 1993.

    Article  ADS  MATH  Google Scholar 

  • D. S. Henningson and S. C. Reddy. On the role of linear mechanisms in transition to turbulence. Phys. Fluids, 6:1396–1398, 1994.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • R. D. Joslin, C. L. Streett, and C. L. Chang. Spatial direct numerical simulations of boundary-layer transition mechanisms: Validation of PSE theory. Theoret. Comput. Fluid Dyn., 4:271–288, 1993.

    Article  ADS  MATH  Google Scholar 

  • B. G. B. Klingmann. On transition due to three-dimensional disturbances in plane Poiseuille flow. J. Fluid Mech., 240:167–195, 1992.

    Article  ADS  Google Scholar 

  • G. Kreiss, A. Lundbladh, and D. S. Henningson. Bounds for threshold amplitudes in subcritical shear flows. J. Fluid Mech., 270:175–198, 1994.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • M. T. Landahl. Wave breakdown and turbulence. SIAM J. Appl. Math., 28:735–756, 1975.

    Article  MATH  Google Scholar 

  • M. T. Landahl. A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech., 98:243–251, 1980.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • A. Lundbladh. Simulation of Bypass Transition to Turbulence. PhD. Thesis from the Royal Institute of Technology, Stockholm, Sweden, 1993.

    Google Scholar 

  • A. Lundbladh, D. S. Henningson, and S. C. Reddy. Threshold amplitudes for transition in channel flows. Proceedings from the 1993 ICASE/NASA Langley Workshop on the Transition to Turbulence, 1993.

    Google Scholar 

  • M. V. Morkovin. The many faces of transition. In C. S. Wells, editor, Viscous Drag Reduction. Plenum Press, 1969.

    Google Scholar 

  • P. J. Olsson and D. S. Henningson. Optimal disturbances in watertable flow. Technical Report TRITA-MEK 1993:11, Royal Institute of Techmology, Stockholm, 1993.

    Google Scholar 

  • S. A. Orszag and A. T. Patera. Secondary instability of wall-bounded shear flows. J. Fluid Mech., 128:347–385, 1983.

    Article  ADS  MATH  Google Scholar 

  • S. C. Reddy and D. S. Henningson. Energy growth in viscous channel flows. J. Fluid Mech., 252:209–238, 1993.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • N. D. Sandham, N. A. Adams, and L. Kleiser. Direct simulation of breakdown to turbulence following oblique instability waves in a supersonic boundary layer. First ERCOFTAC workshop on direct and large eddy simulation, Guildford, England, march 28–30., 1994.

    Google Scholar 

  • P. J. Schmid and D. S. Henningson. A new mechanism for rapid transition involving a pair of oblique waves. Phys. Fluids A, 4:1986–1989, 1992.

    Article  MathSciNet  ADS  Google Scholar 

  • P. J. Schmid and D. S. Henningson. Optimal energy density growth in Hagen-Poiseuille flow. J. Fluid Mech., 1994. (To Appear).

    Google Scholar 

  • P. J. Schmid and H. K. Kytömaa. Transient and asymptotic stability of granular flow. J. Fluid Mech., 264:255–275, 1994.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • P. J. Schmid, A. Lundbladh, and D. S. Henningson. Spatial evolution of disturbances in plane Poiseuille flow. Proceedings from the 1993 ICASE/NASA Langley Workshop on the Transition to Turbulence, 1993.

    Google Scholar 

  • L. N. Trefethen, A. E. Trefethen, S. C. Reddy, and T. A. Driscoll. Hydrodynamic stability without eigenvalues. Science, 261:578–584, 1993.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Henningson, D. (1995). Bypass Transition and Linear Growth Mechanisms. In: Benzi, R. (eds) Advances in Turbulence V. Fluid Mechanics and Its Applications, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0457-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0457-9_36

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4205-5

  • Online ISBN: 978-94-011-0457-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics