Skip to main content

A View on Nonlinear Optimization

  • Chapter

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 25))

Abstract

Once the concepts of a material object are established, the act of designing consists on choosing the values for the quantities that prescribe the object, or dimensioning. These quantities are called Design Variables. A particular value assumed by the design variables defines a configuration. The design must meet Constraints given by physical or others limitations. We have a feasible configuration if all the constraints are satisfied.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, J. S. „Introduction to Optimum Design“ McGraw-Hill, New York, 1989.

    Google Scholar 

  2. Auatt, S. S. „Nonlinear Programming Algorithms for Elastic Contact Problems“ (in Portuguese), MSc. Dissertation, COPPE -Federal University of Rio de Janeiro, Mech. eng. Program, Caixa Postal 68503, 21945-970, Rio de Janeiro, Brazil, 1993.

    Google Scholar 

  3. Baron, F. J. and Pironneau, O. „Multidisciplinary Optimal Design of a Wing Profile“ Proceedings of STRUCTURAL OPTIMIZATION 93, Rio de Janeiro, Aug. 1993, J. Herskovits ed..

    Google Scholar 

  4. Baron, F. J. „Constrained Shape Optimization of Coupled Problems with Electromagnetic Waves and Fluid Mechanics“(in Spanish), D. Sc. Dissertation, University of Malaga, Spain, 1994.

    Google Scholar 

  5. Baron, F. J., Duffa, G., Carrere, F. and Le Tallec, P. „Optimisation de forme en aerodynamique“ CHOCS „Revue scientifique et technique de la Direction des Applications Militaires du CEA“ France. 1994.

    Google Scholar 

  6. Baron, F. J. „Radar Visibility Optimization under Aerodynamic Constraints for a Wing Profile“ Research Report No. 2073, INRIA, BP 105, 78153 Le Chesnay CEDEX, France, 1994.

    Google Scholar 

  7. Bazaraa, M. S. and Shetty, C.M. Nonlinear Programming, Theory and Algorithms“John Wiley and Sons, New York, 1979.

    MATH  Google Scholar 

  8. Beale, E. M. L. „Numerical Methods “ in Nonlinear Programming, J. Abadie ed, North -Holland, Amsterdam, 1967.

    Google Scholar 

  9. Dennis, J. E. and More, J. J. „Quasi -Newton Methods, Motivation and Theory“ SIAM Review, 19, pp. 46–89,1977.

    Article  MathSciNet  MATH  Google Scholar 

  10. Dennis, J. E. and Schnabel, R. „Numerical Methods for Constrained Optimization and Nonlinear Equations “ Prentice Hall, 1983.

    Google Scholar 

  11. Dew, M. C. „A First Order Feasible Directions Algorithm for Constrained Optimization“Technical Report No. 153, Numerical Optimization Centre, The Hatfield Polytechnic, P. O. Box 109, College Lane, Hatfield, Hertfordshire AL 10 9AB, U. K., 1985.

    Google Scholar 

  12. Dew, M. C. „A Feasible Directions Method for Constrained Optimization based on the Variable Metric Principle“Technical Report No. 155, Numerical Optimization Centre, The Hatfield Polytechnic, P. O. Box 109, College Lane, Hatfield, Hertford shire AL 10 9AB, U. K., 1985.

    Google Scholar 

  13. Dikin, I. I. „About the Convergence of an Iterative Procedure“(in Russian), Soviet Mathematics Doklady, Vol. 8, pp. 674–675, 1967.

    MATH  Google Scholar 

  14. Fletcher, R. „Practical methods in Optimization“ Vol. I and II, John Wiley, Chichester, 1980.

    Google Scholar 

  15. Fox, R. L. „Optimization Methods for Engineering Design“ Addison-Wesley, Reading, 1973.

    Google Scholar 

  16. Gabay, D. „Reduced Quasi -Newton Methods with Feasibility Improvement for Nonlinearly Constrained Optimization“ Mathematical Programming Study 16, pp. 18–44,1982.

    Article  MathSciNet  MATH  Google Scholar 

  17. Garcia Palomares, U. M. and Mangasarian, O. L., „Superlinearly Convergent Quasi Newton Algorithms for Nonlinearly Constrained Optimization Problems“ Mathematical Programming 11, pp. 1–13, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  18. Gilbert, J. C. „Superlinear Convergence of a Reduced BFGS Method With Piecewise Line-search and Update Criterion“ Research Report No. 103, INRIA, BP 105, 78153 Le Chesnay CEDEX, France, 1993.

    Google Scholar 

  19. Gill, P. E., Murray, W. and Wright, M. H. „Practical Optimization“ Academic Press, New York, 1981.

    MATH  Google Scholar 

  20. Haftka, R. T., Gürdal, Z. and Kamat, M. P. „Elements of Structural Optimization “ Kluwer Academic Publishers, 1990.

    MATH  Google Scholar 

  21. Han, S. P. „A Globally Convergent Method for Nonlinear Programming“ Journal for Optimization Theory and Applications, 22, pp. 297–309, 1977.

    Article  MATH  Google Scholar 

  22. Haug, E. J. and Arora, J.S. „Applied Optimal Design“ Wiley Interscience, New York, 1979.

    Google Scholar 

  23. Herskovits, J. -„A Two-Stage Feasible Direction Algorithm for Non-Linear Constrained Optimization“ Research Report No. 103, INRIA, 1982.

    Google Scholar 

  24. Herskovits, J. „A Two-Stage Feasible Directions Algorithm Including Variable Metric Techniques for Nonlinear Optimization“ Research Report No. 118, INRIA, 1982.

    Google Scholar 

  25. Herskovits, J. „Développement d’une méthode numérique pour Poptimisation non-linéaire“ (in English), These de Docteur -Ingénieur en Mathématiques de la Decision, Paris IX University, Published by INRIA, 1982.

    Google Scholar 

  26. Herskovits, J. „A Two-Stage Feasible Directions Algorithm for Nonlinear Constrained Optimizations Using Quadratic Programming Subproblems“ 11th IFIP Conference on System Modeling and Optimization, Copenhagen, Denmark, July 1983.

    Google Scholar 

  27. Herskovits, J.N. and Carvalho, L.A.V. „A Successive Quadratic Programming based Feasible Directions Algorithm“Proceedings of the 17th International Conference on Analysis and Optimization of Systems, Antibes, France, Springer -Verlag, 1986.

    Google Scholar 

  28. Herskovits, J. „A Two-Stage Feasible Directions Algorithm for Nonlinear Constrained Optimization“ Mathematical Programming, Vol. 36, pp. 19–38, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  29. Herskovits, J. and Coelho, C.A.B. „An Interior Point Algorithm for Structural Optimization Problems“ in Computer Aided Optimum Design of Structures: Recent Advances, Brebbia, C. A. and Hernandez, S. ed., Computational Mechanics Publications, Springer-Verlag, 1989.

    Google Scholar 

  30. Herskovits, J. „An Interior Points Method for Nonlinearly Constrained Optimization“ in Optimization of Large Structural Systems, Rozvany, G. ed., Vol I, pp. 589–608, NATO/ASI Series, Springer -Verlag, 1991.

    Google Scholar 

  31. Herskovits, J. „An Interior Point Technique for Nonlinear Optimization“Research Report No. 1808, INRIA, BP 105, 78153 Le Chesnay CEDEX, France, 1992.

    Google Scholar 

  32. Hiriart-Urruty, J. B. and Lemaréchal, C. „Convex analysis and Minimization Algorithms “ I, II, Springer -Verlag, Berlin Heildelberg, 1993.

    Google Scholar 

  33. Hoyer, W. „Variants of Reduced Newton Method for Nonlinear EqualityConstrained Optimization Problems “ Optimization, 17, pp.757–774,1986.

    Article  MathSciNet  MATH  Google Scholar 

  34. Kirsch, U. „Structural Optimization, Fundamentals and Applications“ Springer -Verlag, Berlin, 1993.

    Google Scholar 

  35. Luenberger, D. G. „Optimization By Vector Space Methods“ John Wiley and Sons, New York, 1969.

    MATH  Google Scholar 

  36. Luenberger D.G., „Linear and Nonlinear Programming“ 2nd. Edition, Addison-Wesley, Reading, 1984.

    MATH  Google Scholar 

  37. Maratos, N. „Exact Penalty Functions Algorithms for Finite Dimensional and control Optimization Problems“ Ph. D. Dissertation, Imperial college, University of London, 1978.

    Google Scholar 

  38. Mayne D.Q. and Polak E., „Feasible Directions Algorithms for Optimization Problems with Equality and Inequality Constraints“ Mathematical Programming 11, pp. 67–80, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  39. Minoux, M. „Programation Mathématique: Theorie et Algorithmes “ ,I and II, Dunod, Paris,1983.

    Google Scholar 

  40. Panier, E.R.,Tits A.L. and Herskovits J. „A QP-Free, Globally Convergent, Locally Superlinearly Convergent Algorithm for Inequality Constrained Optimization“ SIAM Journal of Control and Optimization, Vol 26, pp 788–810, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  41. Powell, M.J.D. „The Convergence of Variable Metric Methods for Nonlinearly Constrained Optimization Calculations“ in Nonlinear Programming 3, edited by O.L. Mangasarian, R.R. Meyer and S.M. Robinson, Academic Press, London, 1978.

    Google Scholar 

  42. Powell M. J. D., „Variable Metric Methods for Constrained Optimization“ in Mathematical Programming -The State of the Art, Edited by A. Bachern, M. Grotschet and B. Korte, Springer-Verlag, Berlin, 1983.

    Google Scholar 

  43. Rosen, J. „The Gradient Projection Method for Nonlinear Programming, I, Linear Constraints “ SIAM J., 8, pp.181–217,1960.

    MATH  Google Scholar 

  44. Rosen, J. „The Gradient Projection Method for Nonlinear Programming, II, Nonlinear Constraints “ SIAM J., 9, pp.514–532,1961.

    Google Scholar 

  45. Tits, L. A. and Zhou J. L. „A Simple, Quadratically Convergent Interior Point Algorithm for Linear Programming and Convex Quadratic Programming“ in Large Scale Optimization: State of the Art, W. W. Hager, D. W. Hearn and P.M. Pardalos ed., Kluwer Academic Publishers B.V, 1993.

    Google Scholar 

  46. Vanderbei, R. J.and Lagarios, J. C., „I. I. Dikin’s Convergence Result for the Affine Scaling Algorithm“ Technical Report, AT&T Bell Laboratories, Murray Hill, NJ, 1988.

    Google Scholar 

  47. Vanderplaats, G. N. „Numerical Optimization Techniques for Engineering Design with Applications“McGraw-Hill“, New York, 1984.

    MATH  Google Scholar 

  48. Vautier, I., Salaun, M. and Herskovits, J. „ Application of an Interior Point Algorithm to the Modeling of Unilateral Contact Between Spot-Welded Shells“ Proceedings of STRUCTURAL OPTIMIZATION 93, Rio de Janeiro, Aug. 1993, J. Herskovits ed..

    Google Scholar 

  49. Zouain N.A., Herskovits J.N., Borges L.A. and Feijóo R.A. -„An Iterative Algorithm for Limit Analysis with Nonlinear Yield Functions“ International Journal on Solids Structures, Vol. 30, n0 10, pp. 1397–1417, Gt. Britain, 1993.

    Article  MATH  Google Scholar 

  50. Wilson, R. B. „A Simplicial Algorithm for Concave Programming “ Ph.D. Dissertation, Harvard University Graduate School of Business Administration, 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Herskovits, J. (1995). A View on Nonlinear Optimization. In: Herskovits, J. (eds) Advances in Structural Optimization. Solid Mechanics and Its Applications, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0453-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0453-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4203-1

  • Online ISBN: 978-94-011-0453-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics