Advertisement

Lack of metabolic temperature compensation in the intertidal gastropods, Littorina saxatilis (Olivi) and L. obtusata (L.)

  • Robert F. McMahon
  • W. D. Russell-Hunter
  • David W. Aldridge
Conference paper
  • 84 Downloads
Part of the Developments in Hydrobiology book series (DIHY, volume 111)

Abstract

Two intertidal snails, Littorina saxatilis (Olivi, 1792) (upper eulittoral fringe/maritime zone) and Littorina obtusata (Linnaeus, 1758) (lower eulittoral) were collected from a boulder shore on Nobska Point, Cape Cod, Massachusetts, in July and acclimated for 15–20 days at 4 ° or 21 °C. Oxygen consumption rate (Vo2) was determined for 11– 15 subsamples of individuals at 4 °, 11 ° and 21 °C with silver/platinum oxygen electrodes. Multiple factor analysis of variance (MFANOVA) of log10 transformed values of whole animal Vo2 with log10 dry tissue weight (DTW) as a covariant revealed that increased test temperature induced a significant increase in Vo2 in both species (P<0.00001). In contrast, MFANOVA revealed that temperature acclimation did not affect Vo2 in either L. saxatilis (P = 0.35) or L. obtusata (P = 0.095). Thus, neither species displayed a capacity for the typical metabolic temperature compensation marked by an increase in Vo2 at any one test temperature in individuals acclimated to a lower temperature that is characteristic of most ectothermic animals. Lack of capacity for metabolic temperature acclimation has also been reported in other littorinid snail species, and may be characteristic of the group as a whole. Lack of capacity for respiratory temperature acclimation in these two species and other littorinids may reflect the extensive semi-diurnal temperature variation that they are exposed to in their eulittoral and eulittoral fringe/maritime zone habitats. In these habitats, any metabolic benefits derived from longer-term temperature compensation of metabolic rates are negated by extreme daily temperature fluctuations. Instead, littorinid species appear to have evolved mechanisms for immediate metabolic regulation which, in L. saxatilis and L. obtusata and other littorinids, appear to centre on a unique ability for near instantaneous suppression of metabolic rate and entrance into short-term metabolic diapause at temperatures above 20–35 °C, making typical seasonal respiratory compensation mechanisms characteristic of most ectotherms of little adaptive value to littorinid species.

Key words

acclimation Littorina obtusata Littorina saxatilis Littorinidae oxygen consumption respiration temperature effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldridge, D. W., W. D. Russell-Hunter & R. F. McMahon, 1995. Effects of ambient temperature and of temperature acclimation on nitrogen excretion and differential catabolism of protein and nonprotein resources in the intertidal snails, Littorina saxatilis (Olivi) and L. obtusata (L.). Hydrobiologia 309(Dev. Hydrobiol. 111): 101–109.CrossRefGoogle Scholar
  2. Apley, M. L., 1970. Field studies on life history, gonadal cycle and reproductive periodicity in Melampus bidentatus (Pulmonata: Ellobiidae). Malacologia 10: 381–397.Google Scholar
  3. Bayne, B. L., R. J. Thompson & J. Widdows, 1973. Some effects of temperature and food on the rate of oxygen consumption of Mytilus edulis L. In W. Wieser (ed.), Effects of Temperature on Ectothermic Organisms. Springer-Verlag, New York (N.Y.); Berlin: 181–193.CrossRefGoogle Scholar
  4. Boyden, C. R., 1972. The behavior, survival and respiration of the cockles, Cerastoderma edule and C. glaucum in air. J. mar. biol. Ass. U.K. 52: 661–680.CrossRefGoogle Scholar
  5. Cavanaugh, G. M., 1956. Formulae and methods V. of the Marine Biological Laboratory Chemical Room. Marine Biological Laboratory, Woods Hole (Massachusetts), 87 pp.Google Scholar
  6. Cossins, A. R., 1981. The adaptation of membrane dynamic structure to temperature. In G. J. Morris & A. Clarke (eds), Effects of Low Temperatures on Biological Membranes. Academic Press, London: 83–106.Google Scholar
  7. Cossins, A. R. & K. Bowler, 1987. Temperature biology of animals. Chapman and Hall, London; New York (N.Y.), 339 pp.CrossRefGoogle Scholar
  8. Cossins, A. R., K. Bowler & C. L. Prosser, 1981. Homeoviscous adaptations and its effects on membrane bound proteins. J. therm. Biol. 6: 183–187.CrossRefGoogle Scholar
  9. Griffiths, R. J., 1977a. Thermal stress and the biology of Actinia equina L. (Anthozoa). J. exp. mar. Biol. Ecol. 27: 141–154.CrossRefGoogle Scholar
  10. Griffiths, R. J., 1977b. Temperature acclimation in Actinia equina L. (Anthozoa). J. exp. mar. Biol. Ecol. 28: 285–292.CrossRefGoogle Scholar
  11. Grainger, J. N. R., 1969. Factors affecting the body temperature of Patella. Verh. dt. zool. Ges. 1968: 479–487.Google Scholar
  12. Hochachka, P. W. & G. N. Somero, 1984. Biochemical adaptation. Princeton University Press, Princeton (N.J.), 537 pp.Google Scholar
  13. Kennedy, V. S. & J. A. Mihursky, 1972. Effects of temperature on the respiratory metabolism of three Chesapeake Bay bivalves. Chesapeake Sci. 13: 1–22.CrossRefGoogle Scholar
  14. Lewis, J. B., 1963. Environmental and tissue temperatures of some tropical intertidal marine animals. Biol. Bull. 124: 277–284.CrossRefGoogle Scholar
  15. Markel, R. P., 1971. Temperature relations in two species of tropical west American littorines. Ecology 52: 1126–1130.CrossRefGoogle Scholar
  16. McMahon, R. F., 1988. Respiratory response to periodic emergence in intertidal molluscs. Am. Zool. 28: 97–114.Google Scholar
  17. McMahon, R. F., 1990. Thermal tolerance, evaporative water loss, air-water oxygen consumption and zonation of intertidal prosobranchs: a new synthesis. Hydrobiologia 193(Dev. hydrobiol. 56): 241–260.CrossRefGoogle Scholar
  18. McMahon, R. F., 1992. Respiratory response to temperature and hypoxia in intertidal gastropods from the Texas coast of the Gulf of Mexico. In J. Grahame, P. J. Mill & D. G. Reid (eds), Proceedings of the 3rd International Symposium on Littorinid Biology. Malacological Society of London, London: 45–59.Google Scholar
  19. McMahon, R. F. & W. D. Russell-Hunter, 1977. Temperature relations of aerial and aquatic respiration in six littoral snails in relation to their vertical zonation. Biol. Bull. 152: 182–198.PubMedCrossRefGoogle Scholar
  20. McMahon, R. F. & W. D. Russell-Hunter, 1978. Respiratory responses to low oxygen stress in marine littoral and sublittoral snails. Physiol. Zool. 51: 408–424.Google Scholar
  21. McMahon, R. F. & W. D. Russell-Hunter, 1981. The effects of physical variables and acclimation on survival and oxygen consumption in the high littoral salt-marsh snail, Melampus bidentatus Say. Biol. Bull. 161: 246–269.CrossRefGoogle Scholar
  22. McMahon, R. F. & J. G. Wilson, 1981. Seasonal respiratory responses to temperature and hypoxia in relation to burrowing depth in three intertidal bivalves. J. therm. Biol. 6: 267–277.CrossRefGoogle Scholar
  23. Newell, R. C., 1979. Biology of intertidal animals, third edition. Marine Ecological Surveys Ltd., Faversham, Kent, U.K., 781 pp.Google Scholar
  24. Newell, R. C. & B. L. Bayne, 1973. A review on temperature and metabolic adaptation in intertidal marine invertebrates. Neth. J. Sea Res. 7: 421–433.CrossRefGoogle Scholar
  25. Newell, R. C. & L. H. Kofoed, 1977. Adjustment of the components of energy balance in the gastropod Crepidula fornicata in response to thermal acclimation. Mar. Biol. 44: 275–286.CrossRefGoogle Scholar
  26. Newell, R. C. & V. I. Pye, 1970a. The influence of thermal acclimation on the relation between oxygen consumption and temperature in Littorina littorea (L.) and Mytilus edulis L. Comp. Biochem. Physiol. 34: 367–383.CrossRefGoogle Scholar
  27. Newell, R. C. & V. I. Pye, 1970b. Seasonal changes in the effect of temperature on the oxygen consumption of the winkle, Littorina littorea (L.) and the mussel Mytilus edulis L. Comp. Biochem. Physiol. 34: 367–383.CrossRefGoogle Scholar
  28. Newell, R. C. & V. I. Pye, 1971. Quantitative aspects of the relationship between metabolism and temperature in the winkle Littorina littorea (L.). Comp. Biochem. Physiol. 38B: 635–650.Google Scholar
  29. Newell, R. C. & A. Roy, 1973. A statistical model relating the oxygen consumption of a mollusk (Littorina littorea) to activity, body size, and environmental conditions. Physiol. Zool. 46: 253–275.Google Scholar
  30. Newell, R. C., L. G. Johnson & L. H. Kofoed, 1977. Adjustment of the components of energy balance in response to temperature change in Ostrea edulis. Oecologia 30: 97–110.CrossRefGoogle Scholar
  31. Precht, H., J. Christophersen, H. Hensel & W. Larcher, 1973. Temperature and life. Springer-Verlag, New York (N.Y.); Berlin, 779 pp.CrossRefGoogle Scholar
  32. Prosser, C. L. & J. E. Heath, 1991. Temperature. In C. L. Prosser (ed.), Environmental and metabolic animal physiology. Wiley-Liss, New York (N.Y.); Chichester, Brisbane; Singapore: 109–165.Google Scholar
  33. Reid, D. G., 1989. The comparative morphology, phylogeny and evolution of the gastropod family, Littorinidae. Phil. Trans. r. Soc, Lond. B 324: 1–110.CrossRefGoogle Scholar
  34. Reid, D. G., 1990. A cladistic phylogeny of the genus Littorina (Gastropoda): implications for evolution of reproductive strategies and for classification. Hydrobiologia. 193(Dev. Hydrobiol. 56): 1–19.CrossRefGoogle Scholar
  35. Russell-Hunter, W. D. & M. L. Apley, 1965. A condition of temporary hyperthermia in a marine littoral snail. Biol. Bull. 129: 408–409.Google Scholar
  36. Russell-Hunter, W. D., R. F. McMahon & D. W. Aldridge, 1980. Lack of respiratory response to temperature acclimation in two littorinid snails. Biol. Bull. 159: 452.Google Scholar
  37. Shirley, T. C., G. J. Denoux & W. B. Stickle, 1978. Seasonal respiration in the marsh periwinkle, Littorina irrorata. Biol. Bull. 154: 322–334.CrossRefGoogle Scholar
  38. Shumway, S. E. & R. K. Koehn, 1982. Oxygen consumption in the American oyster Crassostrea virginica. Mar. Ecol. Prog. Ser. 9: 59–68.CrossRefGoogle Scholar
  39. Southward, A. J., 1958. Note on the temperature tolerances of some intertidal animals in relation to environmental temperatures and geographical distribution. J. mar. biol. Ass. U.K. 37: 49–66.CrossRefGoogle Scholar
  40. Underwood, A. J., 1979. The ecology of intertidal gastropods. Adv. mar. Biol. 16: 111–210.CrossRefGoogle Scholar
  41. Vermeij, G. J., 1971a. Temperature relationships of some tropical Pacific gastropods. Mar. Biol. 10: 308–314.CrossRefGoogle Scholar
  42. Vermeij, G. J., 1971b. Substratum relationships of some tropical Pacific intertidal gastropods. Mar. Biol. 10: 315–320.CrossRefGoogle Scholar
  43. Vernberg, F. J., 1969. Acclimation of intertidal crabs. Am. Zool. 9: 333–341.Google Scholar
  44. Vernberg, W. B. & F. J. Vernberg, 1972. Environmental physiology of marine animals. Springer-Verlag, New York (N.Y); Berlin, 346 pp.CrossRefGoogle Scholar
  45. Wolcott, T. G., 1973. Physiological ecology and intertidal zonation in limpets (Acmaea): a critical look at ‘limiting factors’. Biol. Bull. 145: 389–422.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Robert F. McMahon
    • 1
    • 2
  • W. D. Russell-Hunter
    • 1
    • 3
    • 5
  • David W. Aldridge
    • 1
    • 4
  1. 1.Marine Biological LaboratoryWoods HoleUSA
  2. 2.Section of Comparative Physiology, Department of BiologyThe University of Texas at ArlingtonArlingtonUSA
  3. 3.Department of BiologySyracuse UniversitySyracuseUSA
  4. 4.Department of BiologyNorth Carolina Agricultural and Technical State UniversityGreensboroUSA
  5. 5.EastonUSA

Personalised recommendations