Validation of a planimetric procedure to quantify stress in Littorina littorea (Gastropoda: Mollusca): is it independent of the reproductive cycle?

  • G. Calvo-Ugarteburu
  • V. Saez
  • C. D. McQuaid
  • E. Angulo
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 111)


This study forms part of a larger project in which five planimetric parameters have been used to study changes in the digestive epithelium of Littorina littorea under different environmental and physiological conditions. Our aim was to examine the effect of the reproductive cycle on these parameters in order to assess their usefulness as indicators of stress.

A one way anova shows that the absolute parameters of mean epithelial thickness (MET), mean diverticulum radius (MDR) and mean luminal radius (MLR) vary significantly depending on the time of the year. This variation is highly correlated to the amount of digestive tissue present and hence negatively correlated to the reproductive state because gonad and digestive tissue volume are inversely related. Consequently, these parameters are not good indicators of stress. However, whereas the absolute size of the digestive acinus varies with the reproductive state of the animal, the MET, MDR and MLR retain the same proportions and therefore the ratios MET/MDR and MLR/MET remain constant. This makes them useful indicators of stress because they are independent of intrinsic variables such as the reproductive cycle.

Key words

Littorina littorea planimetry digestive gland reproductive state 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agirregoikoa, M. G., 1988. Mytilus edulis L. bibalbioaren liseriepitelioaren batezbesteko lodieraren aldakuntz espazio-tenporala Bizkaiko kostaldean. Tesis de Licenciatura, Universidad de Pais Vasco — Euskal Herriko Unibertsitatea, 76 pp.Google Scholar
  2. Axiak, V., J. J. George & M. N. Moore, 1988. Petroleum hydrocarbons in the marine bivalve Venus verrucosa: accumulation and cellular responses. Mar. Biol. 97: 225–230.CrossRefGoogle Scholar
  3. Bernard, F. R., 1973. Crystalline style formation and function in the oyster Crassostrea gigas (Thunberg, 1795). Ophelia 12: 159–170.CrossRefGoogle Scholar
  4. Cajaraville, M. P., J. A. Marigomez & E. Angulo, 1989. A stereological survey of lysosomal structure alterations in Littorina littorea exposed to 1-naphthol. Comp. Biochem. Physiol. 93C: 231–237.Google Scholar
  5. Cajaraville, M. P., J. A. Marigomez, G. Diez & E. Angulo, 1992. Comparative effects of the water accommodated fraction of three oils on mussels. 2-Quantitative alterations in the structure of the digestive tubules. Comp. Biochem. Physiol. Ser. C 102: 113–123.Google Scholar
  6. Castillero, J., J. A. Marigomez & J. Moya, 1987. Un nuevo metodo planimetrico para el calculo de la altura media de epitelios. Cuad. Invest. Biol. 10: 89–95.Google Scholar
  7. Couch, J. A., 1984. Atrophy of diverticular epithelium as an indicator of environmental irritants in the oyster, Crassostrea virginica. Mar. envir. Res. 14: 525–526.CrossRefGoogle Scholar
  8. Etxeberria, M., 1990. Alteraciones en la estructura cuantitativa de los tubulos digestivos y de la actividad fasica de la glandula digestiva en mejillones expuestos a cadmio (Cd), cobre (Cu) y cinc (Zn). Tesis de Licenciatura, Universidad del Pais Vasco — Euskal Herriko Unibertsitatea, 94 pp.Google Scholar
  9. Fioroni, P., U. Deutsch, E. Stroben & J. Oehlmann, 1992. Artificially induced pseudohermaphroditism in prosobranchs and its absence in littorinids. In J. Grahame, P. J. Mill & D. G. Reid (eds), Proceedings of the 3rd International Symposium on Littorinid Biology. The Malacological Society of London, London: 313–315.Google Scholar
  10. Fossato, V. U. & E. Siviero, 1974. Oil pollution monitoring in the Lagoon of Venice using the mussel Mytilus galloprovincialis. Mar. Biol. 25: 1–6.CrossRefGoogle Scholar
  11. Fretter, V. & A. Graham, 1962. British prosobranch mollusca. Ray Society, London, 755 pp.Google Scholar
  12. Goldberg, E. D., 1975. The mussel watch — A first step in global marine monitoring. Mar. Pollut. Bull. 6: 111.CrossRefGoogle Scholar
  13. Goldberg, E. D., 1986. The mussel watch concept. Envir. Monit. Ass. 7: 91–103.CrossRefGoogle Scholar
  14. Goldberg, E. D., V. T. Bowen, J. W. Farrington, G. Harvey, J. H. Martin, P. L. Parker, R. W. Risebrough, W. Robertson, E. D. Schneider & E. Gamble, 1978. The mussel watch. Envir. Conserv. 5: 101–125.CrossRefGoogle Scholar
  15. Harrinson, F. L. & R. Berger, 1982. Effects of copper on the latency of lysosomal hexosaminidase in the digestive cells of Mytilus edulis. Mar. Biol. 68: 109–116.CrossRefGoogle Scholar
  16. Janssen, H. H. & N. Scholz, 1979. Uptake and cellular distribution of Cadmium in Mytilus edulis. Mar. Biol. 55: 133–141.Google Scholar
  17. Langton, R. W., 1975. Synchrony in the digestive diverticula of Mytilus edulis L. J. mar. biol. Ass. U.K. 55: 221–230.CrossRefGoogle Scholar
  18. Langton, R. W., 1977. Digestive rhythms in the mussel Mytilus edulis. Mar. Biol. 41: 53–58.Google Scholar
  19. Langton, R. W. & P. A. Gabbot, 1974. The tidal rhythm of extracellular digestion and the response to feeding in Ostrea edulis. Mar. Biol. 24: 181–187.Google Scholar
  20. Lowe, D. M., M. N. Moore & K. R. Clarke, 1981. Effects of oil on digestive cells in mussels: quantitative alterations in cellular and lysosomal structure. Aquat. Toxicol. 1: 213–226.CrossRefGoogle Scholar
  21. Marigomez, J. A., 1989. Aportaciones cito-histologicas a la evaluacion ecotoxicologica de niveles subletales de cadmio en el medio marino: estudios de laboratorio en el gasteropodo prosobranquio Littorina littorea (L.). Tesis doctoral, Universidad del Pais Vasco — Euskal Herriko Unibertsitatea, 430 pp.Google Scholar
  22. Marigomez, J. A., E. Angulo & J. Moya, 1986a. Copper treatment of the digestive gland of the slug Arion ater L. 1. Bioassay conduction and histochemical analysis. Bull. envir. Contam. Toxic. 36: 600–607.CrossRefGoogle Scholar
  23. Marigomez, J. A., E. Angulo & J. Moya, 1986b. Copper treatment of the digestive gland of the slug Arion ater L. 2. Morphometrics and histophysiology. Bull. envir. Contam. Toxic. 36: 608–615.CrossRefGoogle Scholar
  24. Marigomez, J. A., V. Saez, M. P. Cajaraville & E. Angulo, 1990. A planimetric study of the mean epithelial thickness of the molluscan digestive gland over the tidal cycle and under environmental stress conditions. Helgoländer wiss Meeresunters. 44: 81–94.CrossRefGoogle Scholar
  25. Marigomez, J. A., M. Soto & E. Angulo, 1991. Responses of winkles digestive cells and their lysosomal system to environmental salinity changes. Cell. Mollec. Biol. 37: 29–39.Google Scholar
  26. Marigomez, I., M. Soto & E. Angulo, 1992. Seasonal variability in the quantitative structure of the digestive tubules of Littorina littorea. Aquat. Living Resour. 5: 299–305.CrossRefGoogle Scholar
  27. Martel, A., D. H. Larrive, K. R. Klein & J. H. Himmelman, 1986. Reproductive cycle and seasonal feeding activity of the neogastropod Buccinum undatum. Mar. Biol. 92: 211–221.CrossRefGoogle Scholar
  28. Mason, A. Z., K. Simkiss & K. P. Ryan, 1984. The ultrastructural localization of metals in specimens of Littorina littorea collected from clean and polluted sites. J. mar. biol. Ass. U.K. 64: 699–720.CrossRefGoogle Scholar
  29. Moore, M. N., 1980. Cytochemical determination of cellular responses to environmental Stressors in marine organisms. Rapp. P.-v. Rean. Cons. perm. int. Explor. Mer. 179: 7–15.Google Scholar
  30. Moore, M. N., 1985. Cellular responses to pollutants. Mar. Pollut. Bull. 16: 134–139.CrossRefGoogle Scholar
  31. Moore, M. N., 1986. Molecular and cellular indices of pollution. In: Giam, C. S. and M. J. M. Dow (eds), NATO ASI series. Vol 69. Strategies and advanced techniques in marine pollution studies. Mediterranean sea. NATO, Berlin.Google Scholar
  32. Moore, M. N., D. M. Lowe & P. E. M. Fieth, 1978a. Responses of lysosomes in the digestive cells of the common mussel, Mytilus edulis, to sex steroids and cortisol. Cell. Tissue Res. 188: 1–9.PubMedCrossRefGoogle Scholar
  33. Moore, M. N., D. M. Lowe & P. E. M. Fieth, 1978b. Lysosomal responses to experimentally injected anthracene in digestive cells of Mytilus edulis. Mar. Biol. 48: 297–302.Google Scholar
  34. Moore, M. N., D. M. Lowe & S. L. Moore, 1979. Induction of lysosomal destabilisation in marine bivalve mollusca exposed to air. Mar. Biol. Lett. 1: 47–57.Google Scholar
  35. Moore, M. N., A. Bubel & D. M. Lowe, 1980. Cytology and Cytochemistry of the pericardial gland cells of Mytilus edulis and their lysosomal responses to horseradish peroxidase and anthracine. J. mar. biol. Ass. U.K. 60: 135–149.CrossRefGoogle Scholar
  36. Morton, B., 1971. The diurnal rhythm and tidal rhythm of feeding and digestion in Ostrea edulis. Biol. J. linn. Soc. 3: 329–342.CrossRefGoogle Scholar
  37. Morvan, C. & A. D. Ansell, 1988. Stereological methods applied to reproductive cycle of Tapes rhomboides. Mar. Biol. 97: 355–364.CrossRefGoogle Scholar
  38. Oehlmann, J., E. Stroben & P. Fioroni, 1991. The morphological expression of imposex in Nucella lapillus (Linnaeus) (Gastropoda: Muricidae). J. moll. Stud. 57: 375–390.CrossRefGoogle Scholar
  39. Phillips, D. J. H., 1977. The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments: a review. Envir. Pollut. 13: 281–317.CrossRefGoogle Scholar
  40. Recio, A., J. A. Marigomez, E. Angulo & J. Moya, 1988. Zinc treatment of the digestive gland of the slug Arion ater L. 2. Sublethal effects at the histological level. Bull. Environ. Contam. Toxicol. 41: 865–871.PubMedCrossRefGoogle Scholar
  41. Robinson, W. E., 1983. Assessment of bivalve intracellular digestion based on direct measurements. J. moll. Stud. 49: 1–8.Google Scholar
  42. Saez, V, G. Calvo-Ugarteburu, L. A. Aldonza & E. Angulo, 1992. Effects of oil-derived hydrocarbons on the digestive gland of Littorina littorea: a planimetric study. In J. Grahame, P. J. Mill & D. G. Reid (eds), Proceedings of the 3rd International Symposium on Littorinid Biology. The Malacological Society of London, London: 317–319.Google Scholar
  43. Scholz, N., 1980. Accumulation, loss and molecular distribution of Cadmium in Mytilus edulis. Helgolander wiss. Meeresunters. 33: 68–78.CrossRefGoogle Scholar
  44. Simkiss, K. & A. Z. Mason, 1984. Cellular responses of molluscan tissues to environmental metals. Mar. envir. Res. 14: 103–118.CrossRefGoogle Scholar
  45. Simkiss, K., M. Taylor & A. Z. Mason, 1982. Metal detoxification and bioaccumulation in mollusca (review). Mar. Biol. Lett. 3: 187–201.Google Scholar
  46. Soto, M., 1988. Planimetria del grosor medio del epitelio de la glandula digestiva de Littorina littorea en relacion con la variabilidad intrapoblacional e intraindividual. Tesis de Licenciatura, Universidad del Pais Vasco — Euskal Herriko Unibertsitatea, Bilbo, 91 pp.Google Scholar
  47. Thompson, R. J., C. J. Bayne, M. N. Moore & T. J. Carefoot, 1978. Haemolymph volume, changes in the biochemical composition of the blood and cytological responses of the digestive cells in Mytilus californianus Conrad induced by nutritional, thermal and exposure stress. J. comp. Physiol. 127: 287–298.Google Scholar
  48. Thompson, R. J., N. A. Ratcliffe & B. L. Bayne, 1974. Effects of starvation on structure and function in the digestive gland of the mussel (Mytilus edulis L.). J. mar. biol. Ass. U.K. 54: 699–712.CrossRefGoogle Scholar
  49. Tripp, M. R., C. R. Fries, M. A. Craven & C. E. Grier, 1984. Histopathology of Mercenaria mercenaria as an indicator of pollutant stress. Mar. envir. Res. 14: 521–524.CrossRefGoogle Scholar
  50. Underwood, A. J. & C. H. Peterson, 1988. Towards an ecological framework for investigating pollution. Mar. Ecol. Prog. Ser. 46: 227–234.CrossRefGoogle Scholar
  51. Vega, M. M., J. A. Marigomez & E. Angulo, 1989. Quantitative alterations in the structure of the digestive cell of Littorina littorea on exposure to cadmium. Mar. Biol. 103: 547–553.CrossRefGoogle Scholar
  52. Widdows, J., T. Bakke, B. L. Bayne, P. Donkin, D. R. Livingstone, D. M. Lowe, M. N. Moore, S. V. Evans & S. L. Moore, 1982. Responses of Mytilus edulis on exposure to the water accommodated fraction of North Sea oil. Mar. Biol. 67: 15–31.CrossRefGoogle Scholar
  53. Widdows, J., S. L. Moore, R. K. Clarke & P. Donkin, 1983. Uptake, tissue distribution and elimination of (1-14C) Naphthalene in the mussels Mytilus edulis. Mar. Biol. 76: 109–114.Google Scholar
  54. Zar, J., 1984. Biostatistical analysis. 2nd edn. Prentice Hall, New Jersey.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • G. Calvo-Ugarteburu
    • 1
    • 2
  • V. Saez
    • 1
  • C. D. McQuaid
    • 2
  • E. Angulo
    • 1
  1. 1.Zitologi eta Histologi Laborategia, Biologia Zelularra eta Zientzia Morfologikoen Saila, Zientzi FakultateaEuskal Herriko UnibertsitateaBilboSpain
  2. 2.Department of Zoology and EntomologyRhodes UniversityGrahamstown 6140South Africa

Personalised recommendations