Advertisement

A geographically-based study of shell shape in small rough periwinkles

  • K. J. Caley
  • J. Grahame
  • Peter J. Mill
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 111)

Abstract

A study using principal component analysis and discriminant analysis was carried out on shell shape variation in 3093 specimens of rough periwinkles, 2500 of which were below 5.5 mm in columella length, from around the North Atlantic. Using a combination of colour plus sculpture, and life history trait, the snails were classified by inspection and examination into Littorina nigrolineata, L. arcana, L. saxatilis and L. neglecta. Principal component analyses indicated that similar aspects of variation were important in the different taxa, but these were sometimes of differing levels of importance between L. saxatilis and L. neglecta. Crossvalidation in a discriminant analysis showed classification of shells larger than 5.5 mm to have at least an 88% accuracy. That of shells below 5.5 mm showed an accuracy of 49% in L. arcana, increasing to 54% in L. saxatilis and 63% in L. neglectaiwith 76% accuracy for small L. nigrolineata. This last was a special case as only one site was sampled, therefore comparative data are not available. This geographically-based study reveals that L. neglecta is more homogeneous over its range than recently reported by other workers and shows greater differences from L. saxatilis than the latter does from either L. nigrolineata or L. arcana. Size effects do not account for these differences because L. neglecta is morphometrically distinct from both large and small L. saxatilisiFurthermore, small, mid-shore L. saxatilis classify with large high-shore L. saxatilis in discriminant analysis, not with L. neglecta. These results provide evidence that the taxon L. neglecta is more distinct than has sometimes been suggested.

Key words

shell shape principal component analysis discriminant analysis North Atlantic Littorina 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, W. D. & S. F. Newbury, 1984. The adaptations of the rough winkle Littorina rudis to desiccation and to dislodgement by wind and waves. J. anim. Ecol. 53: 93–105.CrossRefGoogle Scholar
  2. Bean, W., 1884. A supplement of new species. In C. Thorpe (ed.), British Marine Conchology, being a descriptive catalogue, arranged according to the Lamarckian System, of the saltwater shells of Great Britain. Edward Lumley, London.Google Scholar
  3. Beaumont, A. & J. H. C. Wei, 1991. Morphological and genetic variation in the Antarctic limpet Nacella concinna (Strebel, 1908). J. moll. Stud. 57: 443–450.CrossRefGoogle Scholar
  4. Boulding, E. G., 1990. Are the opposing selection pressures on exposed and protected shores sufficient to maintain genetic differentiation between gastropod populations with high intermigration rates? Hydrobiologia 193(Dev. Hydrobiol. 56): 41–52.CrossRefGoogle Scholar
  5. Brandwood, A., 1982. Intraspecific variation and distribution of Littorina rudis (Maton) in the Fleet — a coastal lagoon in Dorset. Proc. Dors. Nat. Hist, and Arch. Soc. 104: 165–167.Google Scholar
  6. Campbell, N. A. & R. J. Mahon, 1974. A multivariate study of variation in two species of rock crab of the genus Leptograspus. Aust. J. Zool. 22: 417–425.CrossRefGoogle Scholar
  7. Daguzan, J., 1977. Analyse biometrique du dimorphisme sexual chez quelques Littorinidae (Mollusques, Gasteropodes, Prosobranches). Haliotis 6: 17–40.Google Scholar
  8. Dimm, A. C., 1902. Quantitative study of the effect of environment upon the forms of Nassa obsoleta and Nassa trivittaia from Cold Spring Harbour, Long Island. Biometrika 2: 24–43.CrossRefGoogle Scholar
  9. Dytham, C., J. Grahame & P. J. Mill, 1990. Distribution, abundance and shell morphology of Littorina saxatilis and L. arcana at Robin Hood’s Bay, North Yorkshire. Hydrobiologia 193(Dev. Hydrobiol. 56): 233–240.CrossRefGoogle Scholar
  10. Emson, R. H. & R. J. Faller Fritsch, 1976. An experimental investigation into the effect of crevice availability on abundance and size-structure in a population of Littorina rudis (Maton): Gastropoda: Prosobranchia. J. exp. mar. Biol. Ecol 23: 285–297.CrossRefGoogle Scholar
  11. Etter, R. J., 1988. Asymmetrical developmental plasticity in an intertidal snail. Evolution 42: 322–334.CrossRefGoogle Scholar
  12. Fish, J. D. & L. Sharp, 1985. The ecology of the periwinkle Littorina neglecta Bean. In P. J. Moore & R. A. Seed (eds), The Ecology of Rocky Coasts. Hodder & Stoughton, Lond.: 143–156.Google Scholar
  13. Grahame, J. & P. J. Mill, 1986. Relative size of foot of two species of Littorina on a rocky shore in Wales. J. Zool., Lond. 208: 229–236.CrossRefGoogle Scholar
  14. Grahame, J. & P. J. Mill, 1989. Shell shape variation in Littorina saxatilis and L. arcana — a case of character displacement? J. mar. biol. Ass. U.K. 69: 837–855.CrossRefGoogle Scholar
  15. Grahame, J. & P. J. Mill, 1992. Local and regional variation in shell shape of rough periwinkles in southern Britain. In J. Grahame, P. J. Mill & D. G. Reid (eds), Proceedings of the 3rd International Symposium on Littorinid Biology. The Malacological Society of London, London: 99–106.Google Scholar
  16. Grahame, J., P. J. Mill & A. C. Brown, 1990. Adaptive and nonadaptive variation in two species of rough periwinkle (Littorina) on British shores. Hydrobiologia 193(Dev. Hydrobiol. 56): 223–231.CrossRefGoogle Scholar
  17. Grahame, J. & P. J. Mill, 1993. Shell shape variation in rough periwinkles: genotypic and phenotypic effects. In J. C. Aldrich (ed.), Quantified phenotypic responses in morphology and physiology (Proceedings of the Twenty seventh European Marine Biology Symposium). JAPAGA, Ashford, Ireland: 25–30.Google Scholar
  18. Grahame, J., P. J. Mill, S. Hull & K. J. Caley, 1995. Littorina neglecta Bean: ecotype or species? J. nat. Hist.Google Scholar
  19. Hannaford Ellis, C. J., 1985. The breeding migration of Littorina arcana Hannaford Ellis, 1978 (Prosobranchia: Littorinidae). Zool. J. linn. Soc. 84: 91–96.CrossRefGoogle Scholar
  20. Heller, J., 1975. The taxonomy of some British Littorina species, with notes on their reproduction (Mollusca: Prosobranchia). Zool. J. linn. Soc. 56: 131–151.CrossRefGoogle Scholar
  21. Heller, J., 1976. The effects of exposure and predation on the shell of two British winkles. J. Zool., Lond. 179: 201–213.CrossRefGoogle Scholar
  22. Janson, K., 1982a. Phenotypic differentiation in Littorina saxatilis Olivi (Mollusca, Prosobranchia) in a small area on the Swedish west coast. J. moll. Stud. 46: 167–173.Google Scholar
  23. Janson, K., 1982b. Genetic and environmental effects on the growth rate of Littorina saxatilis. Mar. Biol. 69: 73–78.CrossRefGoogle Scholar
  24. Janson, K. & P. Sundberg, 1983. Multivariate morphometric analysis of two varieties of Littorina saxatilis on the Swedish west coast. Mar. Biol. 74: 49–53.CrossRefGoogle Scholar
  25. Janson, K. & R. D. Ward, 1985. The taxonomic status of Littorina tenebrosa as assessed by morphological and genetic analysis. J. Conch. 32: 9–15.Google Scholar
  26. Johannesson, B., 1986. Shell morphology of Littorina saxatilis Olivi: the relative importance of physical factors and predation. J. exp. mar. Biol. Ecol. 102: 183–195.CrossRefGoogle Scholar
  27. Johannesson, B. & K. Johannesson, 1990. Littorina neglecta Bean: a morphological form within the variable species L. saxatilis (Olivi)? Hydrobiologia 193(Dev. Hydrobiol 56): 71–87.CrossRefGoogle Scholar
  28. Johannesson, K. & B. Johannesson, 1990. Genetic variation within Littorina saxatilis (Olivi) and Littorina neglecta Bean: is L. neglecta a good species? Hydrobiologia 193(Dev. Hydrobiol. 56): 89–97.CrossRefGoogle Scholar
  29. Jolicoeur, P., 1959. Multivariate geographical variation in the wolf Canis lupus L. Evolution 13: 283–299.CrossRefGoogle Scholar
  30. Jolicoeur, P., 1963. The multivariate generalisation of the allometry equation. Biometrics 19: 497–499.CrossRefGoogle Scholar
  31. Jolicoeur, P. & J. Mosimann, 1960. Size and shape variation in the painted turtle; a principal components analysis. Growth 24: 339–354.PubMedGoogle Scholar
  32. McMahon, R. F., 1992. Microgeographic variation in the shell morphometrics of Nodilittorina unifasciata from south-western Australia in relation to wave exposure of shore. In J. Grahame, P. J. Mill & D. G. Reid (eds), Proceedings of the 3rd International Symposium on Littorinid Biology. The Malacological Society of London, London: 107–118.Google Scholar
  33. Mayr, E., 1942. Systematics and the origin of species from the viewpoint of a zoologist. Columbia University Press, New York, 334 pp.Google Scholar
  34. Mayr, E., 1963. Animal species and evolution. Oxford University Press, London, 797 pp.Google Scholar
  35. Mill, P. J. & J. Grahame, 1995. Shape variation in the rough periwinkle Littorina saxatilis on the west and south coasts of Britain.Google Scholar
  36. McNamee, S. & C. Dytham, 1993. Morphometric discrimination of the sibling species Drosophila melanogaster (Meigen) and D. simulans (Sturtevant) (Diptera: Drosophilidae). Syst. Entomol. 18: 231–236.CrossRefGoogle Scholar
  37. Newell, G. E., 1958. The behaviour of Littorina littorea (L.) under natural conditions and its relation to position on the shore. J. mar. biol. Ass. U.K. 37: 229–239.CrossRefGoogle Scholar
  38. Newkirk, G. F. & R. W. Doyle, 1975. Genetic analysis of shell-shape variation in Littorina saxatilis on an environmental cline. Mar. Biol. 30: 227–237.CrossRefGoogle Scholar
  39. Palmer, A. R., 1990. Effect of crab effluent and scent of damaged conspecifics on feeding, growth and shell morphology of the Atlantic Dogwhelk Nucella lapillus. Hydrobiologia 193(Dev. Hydrobiol. 56): 155–182CrossRefGoogle Scholar
  40. Phillips, B. F., N. A. Campbell & B. R. Wilson, 1973. A multivariate study of geographical variation in the whelk Dicathais. J. exp. mar. Biol. Ecol. 11: 27–69.CrossRefGoogle Scholar
  41. Raffaelli, D., 1978. Factors affecting the population structure of Littorina neglecta. J. moll. Stud. 44: 223–230.Google Scholar
  42. Raffaelli, D., 1979. The taxonomy of the Littorina saxatilis speciescomplex, with particular reference to the systematic status of Littorina patula Jeffreys. Zool. J. linn. Soc. 65: 219–232.CrossRefGoogle Scholar
  43. Reid, D. G., 1993. Barnacle-dwelling ecotypes of three British Littorina species and the status of Littorina neglecta Bean. J. moll. Stud. 59: 51–62.CrossRefGoogle Scholar
  44. Reist, J. D., 1985. An empirical evaluation of several univariate methods that adjust for size variation in morphometric data. Can. J. Zool. 63: 1429–1439.CrossRefGoogle Scholar
  45. Reyment, R. A., R. E. Blackith & N. A. Campbell, 1984. Multivariate morphometrics, 2nd Edition. Academic Press, London, 233 pp.Google Scholar
  46. Richards, O. W., 1938. The formation of species. Methods of studying the early stages of evolutionary divergence in animals. In G. R. de Beer (ed.), Evolution. Essays on aspects of evolutionary biology presented to Professor E. S. Goodrich on his seventieth birthday. Clarendon Press, Oxford, 350 pp.Google Scholar
  47. Sacchi, C. F., 1980. Ricerche sulle variazioni di mole in Littorina saxatilis (Olivi) e sul loro significato ecologico. Boll. Mus. Civ. Venezia 31: 51–67.Google Scholar
  48. Sacchi, C. F. & A. M. Torelli, 1973. Présence, variabilité et cycle biotique de Littorina saxatilis (Olivi) (Gastropoda, Prosobranchia) dans la lagune de Venise. Atti. Soc. Peloritana di scienze fisiche matem. e naturali 19: 181–188.Google Scholar
  49. SAS Institute Inc., 1990 SAS/STAT® Users Guide, Version 6, fourth edition, volumes 1 and 2. SAS Institute, Cary N.C., 1739 pp.Google Scholar
  50. Smith, J. E., 1981. The natural history and taxonomy of shell variation in Littorina saxatilis and L. rudis. J. mar. biol. Ass. U.K. 61: 215–241.CrossRefGoogle Scholar
  51. Smith, S. M., 1979. Littorina rudis var. scotia and its adaptation to the extreme environment of Rockall (Mollusca: Gastropoda). Porcupine Newsletter 1: 138–139.Google Scholar
  52. Sundberg, P., 1988. Microgeographic variation in shell characters of Littorina saxatilis (Olivi) a question mainly of size? Biol. J. linn. Soc. 35: 169–184.CrossRefGoogle Scholar
  53. Takada, Y., 1992. The migration and growth of Littorina brevicula on a boulder shore in Amakusa, Japan. In J. Grahame, P. J. Mill & D. G. Reid (eds), Proceedings of the 3rd International Symposium on Littorinid Biology. The Malacological Society of London, London: 277–279.Google Scholar
  54. Templeton, A. R., 1989. The meaning of species and speciation: a genetic perspective. In D. Otte & J.A. Endler (eds), Speciation and its Consequences. Sinnauer Associates Inc., Mass.: 3–27.Google Scholar
  55. Tissot, B. N., 1988. Geographic variation and heterochrony in two species of cowries (genus Cypraea). Evolution 42: 103–117.CrossRefGoogle Scholar
  56. Van Marion, P., 1981. Intra-population variation of the shell of Littorina rudis (Maton) (Mollusca: Prosobranchia). J. moll. Stud. 47: 99–107.Google Scholar
  57. Wilkins, N. P. & D. O’Regan, 1980. Generic variation in sympatric sibling species of Littorina. Veliger 22: 355–359.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • K. J. Caley
    • 1
  • J. Grahame
    • 1
  • Peter J. Mill
    • 1
  1. 1.Department of Pure & Applied BiologyUniversity of LeedsLeedsUK

Personalised recommendations