Advertisement

Extreme morphological diversity between populations of Littorina obtusata (L.) from Iceland and the UK

  • R. I. Lewis
  • Gray A. Williams
Conference paper
  • 80 Downloads
Part of the Developments in Hydrobiology book series (DIHY, volume 111)

Abstract

Marine gastropods which do not disperse larvae in the plankton exhibit a relatively high degree of interpopulation morphological variability. This phenomenon has been the root of considerable taxonomic confusion, particularly in the Littorinidae. In the present study, specimens of Littorina obtusata from the UK were compared morphologically and genetically with two samples of a northern high-spired form from Iceland which has been referred to by some workers as Littorina palliata. A multivariate discriminant function analysis based on three measured shell dimensions clearly separated the three samples, correctly predicting the origin of shells on the basis of morphology alone in 96% of cases. However, genetic analysis revealed that the most distant relationship, based on allozyme data at 13 loci, was surprisingly close (Nei’s I=0.983) providing no evidence to suggest that L. palliata is not conspecific with L. obtusata.

Key words

Taxonomy morphological variation allozyme variation Littorina palliata dispersal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appleton, R. D. & A.R. Palmer, 1988. Water-borne stimuli released by predatory crabs and damaged prey induce more predator resistant shells in a marine gastropod. Proc. natn. Acad. Sci. U.S.A. 85: 4387–4391.CrossRefGoogle Scholar
  2. Behrens Yamada, S., 1987. Geographic variation in growth rates of Littorina littorea, and L. saxatilis. Mar. Biol. 96: 529–534.CrossRefGoogle Scholar
  3. Behrens Yamada, S., 1989. Are direct developers more locally adapted than planktonic developers? Mar. Biol. 103: 403–411.CrossRefGoogle Scholar
  4. Berger, E. M., 1973. Gene-enzyme variation in three sympatric species of Littorina. Biol. Bull. 145: 83–90.CrossRefGoogle Scholar
  5. Boulding, E. G. & T.K. Hay, 1993. Quantitative genetics of shell form of an intertidal snail: constraints on short-term response to selection. Evolution 47: 576–592.CrossRefGoogle Scholar
  6. Colman, J., 1932. A statistical test of the species concept in Littorina. Biol. Bull. 62: 223–243.CrossRefGoogle Scholar
  7. Dautzenberg, P. H. & H. Fischer, 1914. Etude sur le Littorina obtusata et ses variations. J. Conch. 62: 87–128.Google Scholar
  8. Etter, R. J., 1988. Asymmetrical developmental plasticity in an intertidal snail. Evolution 42: 322–334.CrossRefGoogle Scholar
  9. Ferguson, A., 1980. Biochemical systematics and evolution. Blackie, Glasgow.Google Scholar
  10. Gibbs, P. E., 1993. Phenotypic changes in the progeny of Nucella lapillus (Gastropoda) transplanted from an exposed shore to sheltered inlets. J. moll. Stud. 59: 187–194.CrossRefGoogle Scholar
  11. Goodwin, B. J. & J. D. Fish, 1977. Inter-and intraspecific variation in Littorina obtusata and L. mariae (Gastropoda: Prosobranchia). J.Moll. Stud. 43: 241–251.Google Scholar
  12. Harris, H., & D. A. Hopkinson, 1978. Handbook of electrophoresis in human genetics. North-Holland, Amsterdam.Google Scholar
  13. Hubendick, B., & A. Warén, 1969-76. Framgälade Snäckor fra Svenska Västkusten. Göteborg Naturhistoriska Museum. 36-43.Google Scholar
  14. Janson, K., 1982. Genetic and environmental effects on the growth rate of Littorina saxatilis. Mar. Biol. 69: 73–78.CrossRefGoogle Scholar
  15. Johannesson, B., 1986. Shell morphology of Littorina saxatilis Olivi: the relative importance of physical factors and predation. J. exp. mar. Biol. Ecol. 102: 183–195.CrossRefGoogle Scholar
  16. Kemp, P. & M. D. Bertness, 1984. Snail shape and growth rates: evidence for plastic shell allometry in Littorina Littorea. Proc. natn. Acad. Sci. U.S.A. 81: 811–813.CrossRefGoogle Scholar
  17. Knudsen, J., 1949. Geographical variation of Littorina obtusata (L.) in the North-Atlantic. Vidensk. Meddr. Dansk. Naturh. Foren. III: 247-255.Google Scholar
  18. Lewis, R. I., & J. P. Thorpe, 1994. Temporal Stability of Gene Frequencies within Genetically Heterogeneous Populations of the Queen Scallop Aequipecten (Chlamys) opercularis (L.). Mar. Biol. 121: 117–126.CrossRefGoogle Scholar
  19. Lindstrom, S. C. & K. M. Cole, 1992. The Porphyra lanceolata — P. pseudolanceolata (Bangiales, Rhodophyta) complex unmasked — recognition of new species based on isozymes, morphology, chromosomes and distributions. Phycologia 31: 431–448.CrossRefGoogle Scholar
  20. Maynard-Smith, J., 1989. Evolutionary genetics. Oxford University Press, Oxford.Google Scholar
  21. Moyse, J., J. P. Thorpe, & E. Al-Hamadani, 1982. The status of Littorina aestuarii Jeffreys. An approach using morphology and biochemical genetics. J. Conch. 31: 7–15.Google Scholar
  22. Nei, M., 1972. Genetic distance between populations. Am. Nat. 106: 283–292.CrossRefGoogle Scholar
  23. Newkirk, G. F., & R. W. Doyle, 1975. Genetic Analysis of Shell Shape Variation in Littorina saxatilis on an Environmental Cline. Mar. Biol. 30: 227–237.CrossRefGoogle Scholar
  24. Norušis, M. J., 1992. SPSS for Windows Professional Statistics Release 5. SPSS Inc., Michigan.Google Scholar
  25. Oldroyd, D. R., 1980. Darwinian Impacts, 2nd edn. The Open University Press, Milton Keynes.Google Scholar
  26. Raffaelli, D., 1982. Recent ecological research of some European species of Littorina. J. moll. Stud. 48, 342–354.Google Scholar
  27. Richardson, B. J., P. R. Baverstock & M. Adams, 1986. Allozyme Electrophoresis. Academic Press, Orlando.Google Scholar
  28. Seeley, R. H., 1986. Intense natural selection caused a rapid morphological transition in a living marine snail. Proc. natn. Acad. Sci. U.S.A. 83: 6897–6901.CrossRefGoogle Scholar
  29. Shaw, P. R. & R. Prasad, 1970. Starch gel electrophoresis of enzymes — a compilation of recipes. Biochem. Genet. 4: 297–320.PubMedCrossRefGoogle Scholar
  30. Thorpe, J. P., 1982. The molecular clock hypothesis: Biochemical evolution, genetic differentiation and systematics. Ann. Rev. Ecol. Syst. 13: 139–68.CrossRefGoogle Scholar
  31. Thorson, G., 1941. Marine Gastropoda Prosobranchiata. In: The Zoology of Iceland, vol 4., (part 60): 30–33.Google Scholar
  32. Vermeij, G. J., 1982. Phenotypic evolution in a poorly dispersing snail after arrival of a predator. Nature 299: 349–350.CrossRefGoogle Scholar
  33. Ward, R. D., 1990. Biochemical variation in the genus Littorina (Prosobranchia: Mollusca). Hydrobiologia 193(Dev. Hydrobiol. 56): 53–69.CrossRefGoogle Scholar
  34. Williams, G. A., 1994. Variation in populations of Littorina obtusata and L. mariae (Gastropoda: Prosobranchia) along the Severn Estuary. Biol. J. Linn. Soc. 51: 189–198.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • R. I. Lewis
    • 1
  • Gray A. Williams
    • 1
  1. 1.Port Erin Marine LaboratoryThe University of LiverpoolPort Erin, Isle of ManUK

Personalised recommendations