Advertisement

Maintenance of zonation patterns in two species of flat periwinkle, Littorina obtusata and L. mariae

  • Gray A. Williams
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 111)

Abstract

The zonation patterns of Littorina obtusata (L.) and Littorina mariae Sacchi et Rastelli were shown to be quite distinct on a sheltered rocky shore. L. obtusata was found at all the heights sampled; it reached peak numbers at mid shore on the alga Ascophyllum nodosum L. (Le Jol). There was no difference in the tidal height occupied by adults or juveniles; or in the mean size of L. obtusata along the vertical gradient of the shore. In contrast L. mariae occurred exclusively low on the shore, on Fucus serratus L. Translocation of the two species within their respective levels resulted in random movement after 4 days, although initial movements after 1 and 2 days were sometimes directional. Animals transplanted to the normal level of the other species showed directional movement towards their home zone; this was most pronounced after 4 days. There was no difference in the distance moved by the two species, although the distance moved did vary with tidal height, both species moving further at mid shore than low shore. Distances moved by littorinids at replicate areas in the low shore were similar but those at mid shore did vary. There was an interaction between the species and the different tidal heights which revealed that transplanted species moved further than translocated species at the same tidal level. However, this was only significant in the case of L. mariae. It is suggested that the close relationship between the winkles and their host algae may direct the homing behaviour of displaced individuals.

Key words

epiphytes behaviour rocky shore Littorina obtusata Littorina mariae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, G. D., 1960. Directional movement of the intertidal snail, Littorina littorea. Biol. Bull. 119: 301–302.Google Scholar
  2. Barkman, J. J., 1955. On the distribution and ecology of Littorina obtusata (L.) and its subspecific units. Arch. Neerl. Zool. 11: 22–86.CrossRefGoogle Scholar
  3. Bock, C. E. & R. E. Johnson, 1967. The role of behaviour in determining the intertidal zonation of Littorina planaxis Philippi 1847, and Littorina scutulata Gould, 1849. Veliger. 10: 42–54.Google Scholar
  4. Bovbjerg, R. V., 1984. Habitat selection in two intertidal snails, genus Nerita. Bull. mar. Sci. 34: 185–196.Google Scholar
  5. Byers, B. A. & J. B. Mitton, 1981. Habitat choice in the intertidal snail Tegulafunebralis. Mar. Biol. 65: 149–154.CrossRefGoogle Scholar
  6. Chapman, M. G., 1986. Assessment of some controls in experimental transplants of intertidal gastropods. J. exp. mar. Biol. Ecol. 103: 181–201.CrossRefGoogle Scholar
  7. Chapman, M. G. & A. J. Underwood, 1992a. Experimental designs for the analyses of movements by molluscs. In J. Grahame, P. J. Mill & D. G. Reid (eds), Proceedings of the 3rd International Symposium on Littorinid Biology. Malacological Society of London, London: 169–180.Google Scholar
  8. Chapman, M. G. & A. J. Underwood, 1992b. Foraging behaviour of marine benthic grazers. In D. M. John, S. J. Hawkins & J. H. Price (eds), Plant-animal interactions in the marine benthos. Systematics Association Special Volume No 46. Clarendon Press, Oxford: 289–317.Google Scholar
  9. Charles, G. H., 1961. The mechanism of orientation of freely moving Littorina littoralis (L.) to polarized light. J. exp. Biol. 38: 203–212.Google Scholar
  10. Chen, Y. S. & A. M. M. Richardson, 1987. Factors affecting the size structure of two populations of the intertidal periwinkle, Nodilittorina unifasciata (Gray, 1839), in the Derwent River, Tasmania. J. moll. Stud. 53: 69–78.CrossRefGoogle Scholar
  11. Doering, P. H. & D. W. Phillips, 1983. Maintenance of the shore-level size gradient in the marine snail Tegula funebralis (A. Adams): importance of behavioural responses to light and sea star predators. J. exp. mar. Biol. Ecol. 67: 159–173.CrossRefGoogle Scholar
  12. Evans, F., 1965. The effect of light on zonation of the four periwinkles, Littorina littorea (L); L. obtusata (L); L. saxatilis (Olivi) and Melaraphe neritoides (L) in an experimental tidal tank. Neth. J. Sea Res. 2: 556–565.CrossRefGoogle Scholar
  13. Gendron, R. P., 1977. Habitat selection and migratory behaviour of the intertidal gastropod, Littorina littorea (L.). J. anim Ecol. 46: 79–92.CrossRefGoogle Scholar
  14. Goodwin, B. J., 1975. Studies on the biology of Littorina obtusata and L. mariae (Mollusca Gastropoda). Unpublished Ph. D. thesis. University College of Wales, Aberystwyth, U.K.Google Scholar
  15. Goodwin, B. J. & J. D. Fish, 1977. Inter-and intraspecific variation in Littorina obtusata and L. mariae (Gastropoda: Prosobranchiata). J. moll. Stud. 43: 241–254.Google Scholar
  16. Guiterman, J. D., 1970. The population biology of Littorina obtusata (L.) (Gastropoda: Prosobranchiata). Unpublished Ph.D. thesis. University College of Wales, Bangor, U.K.Google Scholar
  17. Janssen, C. R., 1960. The influence of temperature on geotaxis and phototaxis in Littorina obtusata (L). Arch. Neerl. Zool. 3: 500–510.CrossRefGoogle Scholar
  18. Jones, W. E., S. Bennell, C. Beveridge, B. McConnell, S. Mack-Smith & J. Mitchell, 1980. Methods of data collection and processing in rocky intertidal monitoring. In: Price, J. H., D. E. Irvine & W. F. Farnham (eds), The shore environment. Vol 1: Methods. Academic Press, Lond.: 137–17Google Scholar
  19. McQuaid, C. D., 1981. The establishment and maintenance of vertical size gradients in populations of Littorina africana knysnaensis (Philippi) on an exposed rocky shore. J. exp. mar. Biol. Ecol. 54: 77–89.CrossRefGoogle Scholar
  20. Norton, T. A., S. J. Hawkins, N. L. Manley, G. A. Williams & D. C. Watson, 1990. Scraping a living: a review of littorinid grazing. Hydrobiologia 193(Dev. Hydrobiol. 56): 117–138.CrossRefGoogle Scholar
  21. Norton, T. A. & N. L. Manley, 1990. The characteristics of algae in relation to their vulnerability to grazing snails. In R. N. Hughes (ed.), Behavioural mechanisms of food selection. NATO ASI Series Vol G20, Springer-Verlag, Berlin and Heidelberg: 461–478.CrossRefGoogle Scholar
  22. Petraitis, P., 1982. Occurrence of random and directional movements in the periwinkle Littorina littorea. J. exp. mar. Biol. Ecol. 59: 207–218.CrossRefGoogle Scholar
  23. Reimchen, T. E., 1974. Studies on the biology and colour polymorphism of two sibling species of marine gastropod (Littorina). Unpublished Ph. D. thesis. University of Liverpool, U.K.Google Scholar
  24. Sacchi, C. F, 1969. Recherches sur l’écologie comparée de Littorina obtusata (L.) et de L. mariae Sacchi et Rast. (Gastropoda, Prosobranchia) en Galice et en Bretagne. Invest. pesq. 33: 381–414.Google Scholar
  25. Sacchi C. F., 1972a. Recherches sur la valence thermique du couple d’espèces intertidales Littorina obtusata (L.) et L. mariae (Sacchi et Rast) (Gasteropoda, Prosobranchia). Fifth Marine Biology Symposium: 209-215.Google Scholar
  26. Sacchi C. F., 1972b. Recherches sur l’écologie comparée de Littorina obtusata (L.) et de L. mariae Sacchi et Rast. (Gasteropoda, Prosobranchia). II. Recherches sur la valence thermique. Boll. Pesca. Piscic. Idrobiol. 27: 105–137.Google Scholar
  27. Sacchi, C. F. & M. L. Rastelli, 1966. Littorina mariae nov. sp. Les différences morphologiques et écologiques entre ‘nain’ et ‘normaux’ chez 1’‘espèce’ L. obtusata (L.) (Gastr. Prosobr) et leur signification adaptative et évolutive. Atti delia. Soc. Ital. Sci. nat. 105: 351–370.Google Scholar
  28. Thain, V. M., J. F. Thain & J. A. Kitching, 1985. Return of the prosobranch Gibbula umbilicalis (Da Costa) to the littoral region after displacement to the shallow sublittoral. J. moll. Stud. 51: 205–210.Google Scholar
  29. Thompson, T. E., 1968. Experiments with molluscs on the shore and in a laboratory tide model. School Science Review. 149: 97–102.Google Scholar
  30. Underwood, A. J., 1972. Tide-model analysis of the zonation of intertidal Prosobranchs. I. Four species of Littorina (L.). J. exp. mar. Biol. Ecol. 9: 225–239.Google Scholar
  31. Underwood, A. J., 1977. Movement of intertidal gastropods. J. exp. mar. Biol. Ecol. 26: 191–201.CrossRefGoogle Scholar
  32. Underwood, A. J., 1979. The ecology of intertidal gastropods. Adv. mar. Biol. 16: 111–210.CrossRefGoogle Scholar
  33. Underwood, A. J. & M. G. Chapman, 1985. Multifactorial analysis of directions of movement of animals. J. exp. mar. Biol. Ecol. 91: 17–43.CrossRefGoogle Scholar
  34. Underwood, A. J. & M. G. Chapman, 1989. Experimental analyses of the influences of topography of the substratum on movement and density of an intertidal snail, Littorina unifasciata. J. exp. mar. Biol. Ecol. 134: 175–196.CrossRefGoogle Scholar
  35. Van Dongen, A., 1956. The preference of Littorina obtusata for Fucaceae. Arch. Neerl. Zool. 11: 373–386.CrossRefGoogle Scholar
  36. Watson, D. C. & T. A. Norton, 1987. The habitat and feeding preferences of Littorina obtusata and L. mariae Sacchi et Rastelli. J. exp. mar. Biol. Ecol. 112: 61–72CrossRefGoogle Scholar
  37. Williams, G. A., 1987. Niche partitioning in Littorina obtusata and L. mariae. Unpublished Ph. D. thesis, University of Bristol, U.K.Google Scholar
  38. Williams, G. A., 1990. The comparative ecologies of the flat periwinkles, Littorina obtusata (L.) and L. mariae Sacchi et Rastelli. Fld. Stud. 7: 469–482.Google Scholar
  39. Williams, G. A., 1992. The effect of predation on the life histories of Littorina obtusata and L. mariae. J. mar. biol. Ass. U.K. 72: 403–416.CrossRefGoogle Scholar
  40. Williams, G. A., 1994. Variation in populations of Littorina obtusata L. and L. mariae Sacchi et Rastelli in the Severn Estuary. Biol. J. linn. Soc. 51: 189–198.Google Scholar
  41. Williams, G. A. & R. Seed, 1992. Interactions between macrofaunal epiphytes and their host algae. In D. M. John, S. J. Hawkins & J. H. Price (eds), Plant-animal interactions in the marine benthos. Systematics Association Special Volume No 46. Clarendon Press, Oxford: 189–211.Google Scholar
  42. Zar, J. H., 1974. Biostatistical Analysis. Prentice Hall, New Jersey, U.S.A., 620 pp.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Gray A. Williams
    • 1
  1. 1.The Swire Institute of Marine Science and Department of Ecology and BiodiversityThe University of Hong KongHong Kong

Personalised recommendations