Skip to main content

Brain Activation Under Drug Treatment

  • Chapter
  • 109 Accesses

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 26))

Abstract

This chapter explores the premise that assessment of a drug’s effect in the CNS requires consideration of not only the receptors targeted by the drug but also the cerebral regions and neuronal circuits that are functionally modulated by the drug in vivo. A series of combined drug and behavioural PET rCBF activation paradigms are described to illustrate this conjecture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bench CJ, Lammertsma AA, Dolan RJ, Grasby PM, Warrington SJ, Gunn K, Cuddigan M, Turton DJ, Osman S, Frackowiak RSJ. Dose dependent occupancy of central Dopamine D2 receptors by the novel neuroleptic CP-88,059-01: a study using positron emission tomography and 11C-Raclopride. Psychopharmacology 1993;112:308–314.

    Article  PubMed  CAS  Google Scholar 

  2. Farde L, Nordstrom AL, Wiesel FA et al. Positron emission tomographic analysis of central D1 and D2 receptor occupancy in patients treated with classical neuroleptics and clozapine: relation to extrapyramidal side effects. Arch Gen Psych 1992;49:538–544.

    Article  CAS  Google Scholar 

  3. Dewey SL, Smith GS, Logan J, Brodie JD, Simkowitz P, MacGregor RR, Fowler JS, Volkow ND, Wolf AP. Effects of central cholinergic blockade on striatal dopamine release measured with positron emission tomography in normal human subjects. Proc Natl Acad Sci 1993;90:11816–20.

    Article  PubMed  CAS  Google Scholar 

  4. Dewey SL, Smith GS, Logan J, Brodie JD, Yu DW, Ferrieri RA, King PT, MacGregor RR, Martin TP, Wolf AP, Volkow ND, Fowler JS, Meller E. GABAergic inhibition of endogenous dopamine release measured in vivo with 11C-raclopride and positron emission tomography. J Neuroscience 1992;12:3773–3780.

    CAS  Google Scholar 

  5. Dewey SL, Smith GS, Alexoff D, Ding YS, Logan J, King P, Pappas N, MacGregor RR, Brodie JD, Fowler JS, Volkow ND, Wolf AP. Studies of the interactions of dopamine with other neurotransmitters: PET and In Vivo microdialysis experiments. Neuropsychopharmacology 1995;10:81S.

    Google Scholar 

  6. Grasby PM, Friston KJ, Bench C, Frith CD, Cowen PJ, Liddle PF, Frackowiak RSJ Dolan RJ. The effect of the 5-HT1A partial agonist, buspirone, on regional cerebral blood flow in man. Psychopharmacology 1992;108:380–386.

    Article  PubMed  CAS  Google Scholar 

  7. McCulloch J.Mapping functional alterations in the CNS with [14C]-deoxyglucose. In Iversen LL, Iversen SD, Snyder SH editors. Handbook of Psychopharmacology. New York, Plenum, 1982:321–410.

    Chapter  Google Scholar 

  8. Soncrant TT, Pizzolato G, Battistin L. The use of drugs as probes of cerebral function In: Battistin L, Gerstenbrand F editors. PET and NMR: New perspectives in neuroimaging and in clinical neurochemistry. Alan R Liss 1986:131–149.

    Google Scholar 

  9. Cleghom JM, Szechtman H, Garnett ES, Nahmias C, Brown GM, Kaplan RD, Szechtman B, Franco S. Apomorphine effects on brain metabolism in neuroleptic-naive schizophrenic patients. Psychiatry Research Neuroimaging 1991; 40:135–153.

    Article  Google Scholar 

  10. Grasby PM, Friston KJ, Bench C, Frith CD, Cowen PJ, Liddle PF, Frackowiak RSJ, Dolan RJ. The effect of apomorphine on regional cerebral blood flow in normal volunteers. Psych Med 1993; 23: 606–612.

    Article  Google Scholar 

  11. Grasby PM, Friston KJ, Bench C, Frith CD, Paulesu E, Cowen, PJ, Liddle PF, Frackowiak RSJ, Dolan RJ. The effect of the muscarinic antagonist, scopolamine, on rCBF during the performance of a memory task. Exp Brain Res 1995 (in press).

    Google Scholar 

  12. Buchsbaum MS, Potkin SG, Siegal BV, Lohr J, Katz M, Gottschalk LA, Gulasekaram B, Marshall JF, Lottenberg S, Teng CY, Abel L, Plon L, Bunney W E. Striatal metabolic rate and clinical response to neuroleptics in schizophrenia. Arch Gen Psychiatry 1992; 49: 966–974.

    Article  PubMed  CAS  Google Scholar 

  13. Friston KJ, Grasby PM, Frith CD, Bench C, Cowen PJ, Liddle PF Frackowiak RSJ, Dolan RJ. Measuring the neuromodulatory effects of drugs in man with positron emission tomography. Neurosci Letts 1992;141:106 –110.

    Article  CAS  Google Scholar 

  14. Grasby PM, Friston KJ, Bench C, Frith CD, Paulesu E, Cowen PJ, Liddle PF, Frackowiak RSJ, Dolan RJ. The effect of apomorphine and buspirone on regional cerebral blood flow during the performance of a cognitive task - measuring neuromodulatory effects of psychotropic drugs in man. Eur J Neurosci 1992;4:1203–1212.

    Article  PubMed  CAS  Google Scholar 

  15. Goldman-Rakic PS. Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Plum F, Mountcastle V, editors. Handbook of physiology: the nervous system. Baltimore: Williams & Wilkins (American physiological society Bethesda) 1985:373–417.

    Google Scholar 

  16. Sawaguchi T, Matsumara M, Kubota K. Catecholaminergic effects on neuronal activity related to a delayed response task in monkey prefrontal cortex. J Neurophysiol 1990;63:1385–1400.

    PubMed  CAS  Google Scholar 

  17. Sawaguchi T, Goldman-Rakic PS. D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 1991;251:947–950.

    Article  PubMed  CAS  Google Scholar 

  18. Jenkins IH, Fernandez W, Playford ED, Lees AJ, Frackowiak RSJ, Passingham RE, Brooks DJ. Impaired activation of the supplementary motor area in Parkinson’s Disease is reversed when akinesia is treated with apomorphine. Annals Neurology 1992;32:749-757.

    Article  CAS  Google Scholar 

  19. Daniel DG, Weinberger DR, Jones DW, Zigun JR, Coppola R, Handel S, Bigelow LB, Goldberg TE, Berman KF, Kleinman JE. The effect of amphetamine on regional cerebral blood flow during cognitive activation in schizophrenia. J Neurosci 1991;11:1907–1917.

    PubMed  CAS  Google Scholar 

  20. Daniel DG, Berman KF, Weinberger DR. The effect of apomorphine on regional cerebral blood flow in schizophrenia. J Neuropsych 1991;1:377–384.

    Google Scholar 

  21. Friston KJ, Frith CD, Liddle PF, Frackowiak RSJ. Functional connectivity: The prinicipal component analysis of large (PET) data sets. J Cereb Blood Flow Metab 1993;13:5–14.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grasby, P.M., Friston, K.J. (1995). Brain Activation Under Drug Treatment. In: Comar, D. (eds) PET for Drug Development and Evaluation. Developments in Nuclear Medicine, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0429-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0429-6_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4191-1

  • Online ISBN: 978-94-011-0429-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics