Skip to main content

Do the Effects of Muscarinic Receptor Blockade on Brain Glucose Consumption Mimic the Cortical and Subcortical Metabolic Pattern of Alzheimer’s Disease in Normal Volunteers ?

  • Chapter
PET for Drug Development and Evaluation

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 26))

  • 110 Accesses

Abstract

To evaluate the contribution of cholinergic deafferentation to the neural metabolic dysfunction we compared the ability of muscarinic blockade in normal elderly humans to replicate the brain hypometabolic pattern found in Alzheimer’s disease (AD). Positron Emission Tomography (PET) scans following 18F-fluorodeoxyglucose administration were performed in nine unmedicated AD patients studied once under placebo and in nine age-matched normal volunteers studied twice during placebo and scopolamine treatment administered in blind fashion and randomized order. Analysis of the cortical and subcortical PET data, based on anatomic boundaries defined by magnetic resonance imaging scans, evidenced in AD patients metabolic decrements of 14 to 19% in frontal, temporal, cingulate and parietal cortex, insula and substantia nigra. In contrast, scopolamine given to normal volunteers at a dose that induced memory impairment, increased metabolism in all cortical areas and several subcortical regions by 11 to 21%. This distribution bore no resemblance to the pattern of brain hypofunction found in patients with AD. Global muscarinic blockade in humans thus does not appear to mimic the pattern of cerebral hypofunction found in AD. Analysis of small structures, such as substantia nigra, amygdala and hippocampus, showed discrepancies between the known brain lesions and the metabolic response of these structures to AD and to scopolamine. These findings suggest that a neurotransmission component (muscarinic receptor subtype or another neurotransmission) may play a significant role in the brain metabolic pattern of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Höhmann C, Antuono P, Coyle JT. Basal forebrain cholinergic neurons and Alzheimer’s disease. In: Iversen LL, Iversen SD, Snyder SH, editors. Psychopharmacology of the aging nervous system, Handbook of psychopharmacology, vol. 20. New-York:Plenum Press, 1988:69–106.

    Google Scholar 

  2. Perry EK. The cholinergic hypothesis — ten years on. Br Med Bull 1986; 42:63–9.

    PubMed  CAS  Google Scholar 

  3. Rawlins JNP. Do hippocampal lesions produce amnesia in animals ? In: Stahl SM, Iversen SD, Goodman EC editors. Cognitive neurochemistry. Oxford:Oxford University Press, 1987;73–89.

    Google Scholar 

  4. Bartus RT, Dean RL, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982;217:408–417.

    Article  PubMed  CAS  Google Scholar 

  5. Sahakian B.J. Cholinergic drugs and human cognitive performance. In: Iversen LL, Iversen SD, Snyder SH, editors. Psychopharmacology of the aging nervous system, Handbook of psychopharmacology, vol. 20. New-York:Plenum Press, 1988:393–424.

    Google Scholar 

  6. Davis KL, Thai LJ, Gamzu ER et al. A double-blind, placebo-controlled multicenter study of tacrine for Alzheimer’s disease. The Tacrine collaborative study. N Eng J Med 1992;327:1253–9.

    Article  CAS  Google Scholar 

  7. Crook T, Bartus R, Ferris S, Gershon S editors. Treatment development strategies for Alzheimer’s disease. Mark Powley Assoc, 1986.

    Google Scholar 

  8. Piercey MF, Vogelsang GD, Franklin SR, Tang AH. Reversal of scopolamine-induced amnesia and alterations in energy metabolism by the nootropic piracetam: implications regarding identification of brain structures involved in consolidation of memory traces. Brain Res 1987;424:1–9.

    Article  PubMed  CAS  Google Scholar 

  9. Fibiger HC. Cholinergic mechanisms in learning, memory and dementia: a review of recent evidence. TINS 1991;14:220–3.

    PubMed  CAS  Google Scholar 

  10. Rossor M. The neurochemistry of cortical dementias. In: Iversen SD and Goodman EC editors. Cognitive neurochemistry. Oxford,Oxford University Press, 1987:233–47.

    Google Scholar 

  11. Chase TN, Foster NL, Mansi L. Alzheimer’s disease and the parietal lobe. Lancet 1983;2:225.

    Article  PubMed  CAS  Google Scholar 

  12. Foster N.L., Chase T.N., Fedio P., Patronas N.J., Brooks R.A., Di Chiro G. Alzheimer’s disease: focal cortical changes shown by positron emission tomography. Neurology 1983;33:961–65.

    Article  PubMed  CAS  Google Scholar 

  13. Foster NL, Chase TN, Mansi L, Brooks R, Fedio P, Patronas NJ, Di Chiro G. Cortical abnormalities in Alzheimer’s disease. Ann Neurol 1984;16:649–54.

    Article  PubMed  CAS  Google Scholar 

  14. Haxby JV, Duara R, Grady CL, Cutler NR, Rapoport SI. Relations between neuropsychological and cerebral metabolic asymmetries in early Alzheimer’s disease. J Cereb Blood Flow Metab 1985;5:193–200.

    Article  PubMed  CAS  Google Scholar 

  15. McGeer EG, Harrop R, McGeer PL, Martin WRW, Pate BD, Li DKB. Comparison of PET, MRI, and CT with pathology in a proven case of Alzheimer’s disease. Neurology 1986;36:1569–74.

    Article  PubMed  CAS  Google Scholar 

  16. Horwitz B, Grady CL, Schageter NL, Duara R, Rapoport SI. Intercorrelations of regional cerebral glucose metabolic rates in Alzheimer’s disease. Brain Res 1987;407:294–306.

    Article  PubMed  CAS  Google Scholar 

  17. Weinberger J, Greenberg JH, Waldman TG, Sylvestro A, Reivich M. The effect of scopolamine on local glucose metabolism in rat brain. Brain Res 1979;177:337–45.

    Article  PubMed  CAS  Google Scholar 

  18. Dam M, Wamsley JK, Rapoport SI, London ED. Effects of oxotremorine on local glucose utilization in the rat cerebral cortex. J Neurosci 1982;2:1072–8.

    PubMed  CAS  Google Scholar 

  19. Helen P, London ED. Muscimol-scopolamine interactions in the rat brain: a study with 2-deoxy-D-(1-14C)glucose. J Neurosci 1984;4:1405–13.

    PubMed  CAS  Google Scholar 

  20. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology 1984;34:939–44.

    Article  PubMed  CAS  Google Scholar 

  21. Blin J, Carson RE, Blesa R et al. Reproducibility of FDG arterial input functions: Application to the quantification of glucose metabolic rate. J Cereb Blood Flow Metab 1991; 11(suppl2): S161.

    Google Scholar 

  22. Blin J, Ray C, Chase TN, Piercey M. Regional cerebral glucose metabolism compared in rodents and humans. Brain Research 1991;568:215–22.

    Article  PubMed  CAS  Google Scholar 

  23. Sokoloff L, Reivich M, Kennedy C et al. The [14C]-deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 1977;28:897–916.

    Article  PubMed  CAS  Google Scholar 

  24. Phelps ME, Huang SC, Hoffmann EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with [F-18]2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 1979;6:371–88.

    Article  PubMed  CAS  Google Scholar 

  25. Brooks RA, Di Chiro G, Zukerberg BW, Bairamian D, Larson SM. Test-retest studies of cerebral glucose metabolism using fluorine-18 deoxyglucose: validation of method. J Nucl Med 1987;28:53–9.

    PubMed  CAS  Google Scholar 

  26. Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW. The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cerebral Cortex 1991;1:103–16.

    Article  PubMed  CAS  Google Scholar 

  27. Brun A, Gustafson L. Distribution of cerebral degeneration in Alzheimer’s disease. A clinico-pathological study. Arch Psychiatr Nervenkr 1976;223:15–33.

    Article  PubMed  CAS  Google Scholar 

  28. Hauw J-J, Duyckaerts C, Delaère P, Piette F. Topography of lesions in Alzheimer’s disease. A challenge to morphologists. In: Rappoport SI, Petit H, Leys D, Christen Y editors. Imaging, cerebral topography and Alzheimer’s disease. Berlin:Springer Verlag, 1990:53–67.

    Chapter  Google Scholar 

  29. Jellinger K. Morphology of Alzheimer’s disease and related disorders. In: Maurer K, Riederer P, Beckman H editors. Alzheimer’s disease. Epidemiology, neuropathology, neurochemistry, and clinics. Wien:Springler-Verlag, 1990:61–77.

    Google Scholar 

  30. Nagatsu T, Sawada M, Hagihara M, Iwata N, Arai H, lizuka R. Tyrosine hydroxylase, tryptophan hydroxylase, biopterin and neopterin in the brains and biopterin and neopterin in sera from patients with Alzheimer’s disease. In: Maurer K, Riederer P, Beckman H editors. Alzheimer’s disease - Epidemiology, neuropathology, neurochemistry, and clinics. Wien:Springler-Verlag, 1990:253–60.

    Google Scholar 

  31. Duara R, Barker WW, Pascal S, Bruce-Gregorios J, Noremberg M, Boothe T. Lack of correlation of regional neuropathology to the regional PET metabolic deficits in Alzheimer’s disease. J Cereb Blood Flow Metab 1991;11(suppl2):S19.

    Google Scholar 

  32. Molchan SE, Matochik JA, Zametkin AJ, Szymanski HV, Cantillon M, Cohen RM, Sunderland T. A double FDG/PET study of the effects of scopolamine in older adults. Neuropsychopharmacology 1994;10:191–8.

    PubMed  CAS  Google Scholar 

  33. Blin J, Piercey MF, Giuffra ME, Mouradian MM, Chase TE. Metabolic effects of scopolamine and physostigmine in human brain measured by positron emission tomography. J Neurol Sci 1994;123:44–51.

    Article  PubMed  CAS  Google Scholar 

  34. Blin J, Ray C, Piercey M, Bartko JJ, Mouradian MM, Chase TN. Comparison of cholinergic drug effects on regional brain glucose consumption in rats and humans by means of autoradiography and Positron Emission Tomography. Brain Res 1994;635:196–202.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Blin, J., Chase, T.N., Piercey, M.F. (1995). Do the Effects of Muscarinic Receptor Blockade on Brain Glucose Consumption Mimic the Cortical and Subcortical Metabolic Pattern of Alzheimer’s Disease in Normal Volunteers ?. In: Comar, D. (eds) PET for Drug Development and Evaluation. Developments in Nuclear Medicine, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0429-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0429-6_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4191-1

  • Online ISBN: 978-94-011-0429-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics