Skip to main content

Comparative In vivo and In vitro Selectivity of Zolpidem for ω (Benzodiazepine) Modulatory Site Subtypes

  • Chapter
PET for Drug Development and Evaluation

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 26))

Abstract

Drugs acting upon the benzodiazepine binding sites of the GABAA receptor complex constitute one of the most widely used class of psychotropic agents. These drugs increase the sensitivity of the GABAA receptor to its natural agonist, γ-aminobutyric acid (GABA). This allosteric facilitation of GABAergic neurotransmission has found clinical application in the treatment of a large number of disorders [1–3]. These applications are based on the sedative, anxiolytic, anticonvulsant and myorelaxant activities of benzodiazepine receptor agonists. Moreover, these drugs also display untoward effects such as memory disruption, and after chronic treatment, induction of tolerance and dependence. These pleitropic actions constitute one of the most important drawback of benzodiazepines. For this reason, much research has tried to dissociate the effects responsible for the therapeutic activity from those considered as secondary. For example, to dissociate anxiolytic from sedative effects, or hypnotic effects from memory impairment or myorelaxant activities, and also to avoid the induction of tolerance or dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Squires RF, Braestrup C. Benzodiazepine receptors in rat brain. Nature 1977; 266:732–34.

    Article  PubMed  CAS  Google Scholar 

  2. Puia G, Vicini S, Seeburg PH, Costa E. Differences in the action of benzodiazepines and neurosteroids on recombinant γ-aminobutyric acid receptors. In: Barnard EA, Costa, E eds. Transmitter Amino Acid Receptors: Structures, Transduction and Models for Drug Development. New York, Thieme. 1991; 177–83.

    Google Scholar 

  3. Haefely W, Kuksar A, Mohler H, Pieri L, Pole P, Schaffner R. Possible involvement of GABA in the central actions of the benzodiazepines. Adv Biochem Psychopharmacol 1975;14:131–49.

    PubMed  CAS  Google Scholar 

  4. Olsen RW, Tobin AJ. Molecular biology of GABAA receptors. FASEB J. 1990;4:1469–80.

    PubMed  CAS  Google Scholar 

  5. Dunn SMJ, Bateson AN, Martin LL. Molecular neurobiology of the GABAA receptor. Int. Rev. Neurobiol. 1994;36:51–96.

    Article  PubMed  CAS  Google Scholar 

  6. Benavides J, Peny B, Ruano D, Vitorica J, Scatton B. Comparative autoradiographic distribution of central ω (benzodiazepine) modulatory site subtypes with high, intermediate and low affinity for zolpidem and alpidem. Brain Res 1993;604:240–50.

    Article  PubMed  CAS  Google Scholar 

  7. Dennis T, Dubois A, Benavides J, Scatton B. Distribution of central ω1 (benzodiazepine1) and ω2 (benzodiazepine2) receptor subtypes in the monkey and human brain. An autoradiographic study with [3H]flunitrazepam and the ω1) selective ligand [3H] zolpidem. J Pharmacol Exp Ther 1988;247:309–22.

    PubMed  CAS  Google Scholar 

  8. Pritchett DB, Luddens H, Seeburg PH. Type I and type II GABAA-benzodiazepine receptors produced in transfected cells. Science 1989;245:1389–92.

    Article  PubMed  CAS  Google Scholar 

  9. Wisden W, Laurie DJ, Monyer H, Seeburg PH. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J Neurosci 1992;12:1040–60.

    PubMed  CAS  Google Scholar 

  10. Laurie DJ, Seeburg PH, Wisden W. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellum. J Neurosci 1992;12:1063–76.

    PubMed  CAS  Google Scholar 

  11. Sanger D J, Benavides J, Perrault G, Morel E, Cohen C, Joly D, Zivkovic B. Recent developments in the behavioral pharmacology of benzodiazepine (ω) receptors: evidence for the functional significance of receptor subtypes. Neurosci Biobehav Rev 1994;18:355–72.

    Article  PubMed  CAS  Google Scholar 

  12. Depoortere H, Decobert M, Riou-Merle F, Granger P. Pharmaco-EEG profile of zolpidem: an imidazopyridine hypnotic agent. In: Sauvanet JP, Langer SZ, Morselli PL, eds. Imidazopyridines in sleep disorders. New York: Raven Press 1988;81–96.

    Google Scholar 

  13. Depoortere H, Zivkovic B, Lloyd KG, Sanger DJ, Perrault G, Langer SZ, Bartholini G. Zolpidem, a novel non-benzodiazepine hypnotic. I. Neuropharmacological and behavioral effects. J Pharmacol Exp Ther 1986;237:649–58.

    PubMed  CAS  Google Scholar 

  14. Niddam R, Dubois A, Scatton B, Arbilla S, Langer SZ. Autoradiographic localization of 3H-zolpidem binding sites in the rat central nervous system. Comparison with the distribution of 3H-flunitrazepam binding sites, J. Neurochem., 1987;49:890–99.

    Article  PubMed  CAS  Google Scholar 

  15. Ruano D, Vizuete M, Cano J, Machado DA, Vitorica J, Heterogeneity in the allosteric interaction between the GABAA receptor and the benzodiazepine receptor in the rat nervous system, J. Neurochem, 1992;58:485–93.

    Article  PubMed  CAS  Google Scholar 

  16. Dana C, Peny B, Schoemaker H, Benavides J, Autoradiographic distribution of ω (benzodiazepine) modulatory site subtypes in the primate brain. Canadian J. Physiol. Pharmacol. 1994;72,S 1:337.

    Google Scholar 

  17. Pritchett DB, Seeburg PH. γ-Aminobutyric acidA receptor α5-subunit creates novel type II benzodiazepine receptor pharmacology. J Neurochem 1990;54:1802–4.

    Article  PubMed  CAS  Google Scholar 

  18. Faure-Halley C, Graham D, Arbilla S, Langer, S Z. Expression and properties of recombinant α1β2γ2 and α5β2γ2 forms of the rat GABAA receptor. Eur J Pharmacol, Mol Pharmacol Sect, 246:283–87.

    Google Scholar 

  19. Lueddens H, Seeburg PH, Korpi ER. Impact of β and γ variants on ligand-binding properties of γ-aminobutyric acid type A receptors. Mol Pharmacol 1994;45:810–14.

    CAS  Google Scholar 

  20. Wafford KA, Bain CJ, Whiting PJ, Kemp J. Functional comparison of the role of γ subunits in recombinant human γ-aminobutyric acidA/benzodiazepine receptors. Mol Pharmacol 44:437–42

    Google Scholar 

  21. Puia G, Vicini S, Seeburg PH, Costa E. Differences in the action of benzodiazepines and neurosteroids on recombinant gamma-aminobutyric acid receptors. Barnard EA, Costa E eds. Transmitter Amino Acid Receptors: Structures, Transduction and Models for Drug Development, 177–83

    Google Scholar 

  22. Perrault G, Morel E, Sanger DJ, Zivkovic B. Lack of tolerance and physical dependence upon repeated treatment with the novel hypnotic Zolpidem. J Pharmacol Exp Ther 1992;263:298–303.

    PubMed  CAS  Google Scholar 

  23. Depoortere H, Granger P, Biton B, Avenet P, Faure C, Graham D, Langer SZ, Scatton B. Functional and pharmacological properties of α1β2γ2, α3β2γ2 and α5β2γ2 subtypes of GABAA receptors transiently expressed in HEK 293 cells. Canadian J Physiol Pharmacol 1994;72,S 1:338.

    Google Scholar 

  24. Benavides J, Peny B, Dubois A, Perrault G, Morel E, Zivkovic B, Scatton B. In vivo interaction of zolpidem with central benzodiazepine binding sites (as labelled by 3H-Ro 15-1788) in the mouse brain. Preferential affinity of zolpidem for the ω1, (BZD1) subtype. J Pharmacol Exp Ther 1988;245:1033–1041.

    PubMed  CAS  Google Scholar 

  25. Benavides J, Peny B, Durand A, Arbilla S, Scatton B. Comparative in vivo and in vitro regional selectivity of central ω (BZ) modulatory site ligands as displacers of [3H]flumazenil binding in the rat CNS. J Pharmacol Exp Ther 1992;263:884–96.

    PubMed  CAS  Google Scholar 

  26. Benavides J, Depoortere H, Sanger D, Perrault G, Arbilla S, Langer SZ, Zivkovic B, Scatton B. Un domaine specifique (site ω1,) du récepteur GABAA pourrait être impliqué dans les effets hypnotiques du zolpidem. L’Encéphale 1990;XVI: 13–22.

    Google Scholar 

  27. Sauvanet JP, Maarek L, Roger M, Renaudin J, Louvel E, Orofiamma B. Open long-term trials with zolpidem in insomnia. In: Sauvanet JP, Langer SZ, Morselli PL eds. Imidazopyridines in sleep disorders. New York: Raven Press 1988;339–49.

    Google Scholar 

  28. Schlich D, L’Héritier C, Coquelin JP, Attali P. Long-term treatment of insomnia with Zolpidem: a multicentre general practitioner study of 107 patients. J. of Internal. Med. Res. 1991;19:271–79.

    CAS  Google Scholar 

  29. Monti JM, Attali P, Monti D, Zipfel A, de la Giclais B, Morselli PL. Zolpidem and rebound insomnia - a double-blind, controlled polysomnographic study in chronic insomniac patients. Pharmacopsychiat. 1994;27:166–75.

    Article  CAS  Google Scholar 

  30. Nicholson A, Pascoe P. Hypnotic activity of an imidazopyridine (zolpidem). Br. J. Clin. Pharmacol. 1986;21:205–11

    Article  PubMed  CAS  Google Scholar 

  31. Balkin TJ, O’Donnell VM, Wesensten N, McCann U, Belenky G. Comparison of the daytime sleep and performance effects of Zolpidem versus triazolam. Psychopharmacology 1992; 107:83–88.

    Article  PubMed  CAS  Google Scholar 

  32. Pappata S, Samson Y, Chavoix C, Prenant C, Maziere M, Baron JC. Regional specific binding of 11C-Ro15-1788 to central type benzodiazepine receptors in human brain: quantitative evaluation by PET. J Cereb Blood Flow 1988;8:304–13.

    Article  CAS  Google Scholar 

  33. Samson Y, Hantraye P, Baron JC, Soussaline F, Comar D, Maziere M. Kinetics and displacement of 11C-Rol5-1788 a benzodiazepine antagonist studied in human brain in vivo by positron emission tomography. Eur J Pharmacol 1985; 110:247–51.

    Article  PubMed  CAS  Google Scholar 

  34. Abadie P, Baron JC, Bisserbe JC, Boulenger JP, Rioux P, Travere JM, Barre L, Petit-Taboue MC, Zarifian E. Central benzodiazepine receptors in human brain: estimation of regional Bmax and Kd values with positron emission tomography. Eur J Pharmacol 1992;213:107–15.

    Article  PubMed  CAS  Google Scholar 

  35. Durand A, Thenot JP, Bianchetti G, Morselli PL. Comparative pharmacokinetic profile of two imidazopyridine drugs: zolpidem and alpidem. Drugs Metabol Rev 1992;24:239–66.

    Article  CAS  Google Scholar 

  36. Abadie P, Rioux P, Legangneux E, Scatton B, Zariafian E, Bane L. In vivo interaction of zolpidem with the central benzodiazepine receptors in humans: a positron emission tomography study with 11C-flumazenil. Neuropsychopharmacol. 1994;10,3S:112.

    Google Scholar 

  37. Ito K, Yamada Y, Nakamura K, Sawada Y, Iga T. Classification of benzodiazepine hypnotics in humans based on receptor occupancy theory. J. Pharmacokinetics Biopharmaceutics 1993;21:31–41.

    Article  CAS  Google Scholar 

  38. Lassen NA. Neuroreceptor quantitation in vivo by the steady-state principle using constant infusion or bolus injection or radioactive tracers. J Cereb Blood Flow 1992;12:709–16.

    Article  CAS  Google Scholar 

  39. Pauli S, Farde L, Halldin L, Sedvall G. Occupancy of the central benzodiazepine receptors during benzodiazepine treatment determined by PET. Eur. J. Neuropsychopharmacol 1991; 1:229–31.

    Article  Google Scholar 

  40. Videbaek C, Friberg L, Holm S, Wammen S, Foged C, Andersen JV, Dalgaard L, Lassen NA. Benzodiazepine receptor equilibrium constants for flumazenil and midazolam determined in humans with the single photon emission compputer tomography tracer 125I- iomazenil. Eur J Pharmacol 1993;249:43–51

    Article  PubMed  CAS  Google Scholar 

  41. Hantraye Ph, Chavoix C, Guibert B, Fukuda H, Brouillet E, Dodd RH, Prenant C, Crouzel M, Naquet R, Maziere M. Benzodiazepine receptors studied in living primates by positron emission tomography: inverse agonist interactions. Eur J Pharmacol 1987;138:239–47.

    Article  PubMed  CAS  Google Scholar 

  42. Hantraye Ph, Brouillet E, Fukuda H, Chavoix C, Guibert B, Dodd RH, Prenant C, Crouzel M, Naquet R, Maziere M. Benzodiazepine receptors studied in living primates by positron emission tomography: antagonist interactions. Eur J Pharmacol 1988;153:25–32.

    Article  PubMed  CAS  Google Scholar 

  43. De la Sayette V, Chavoix C, Brouillet E, Hantraye P, Kunimoto M, Khalili-Varasteh M, Guibert B, Prenant C, Maziere M. In vivo benzodiazepine receptor occupancy by CL 218,872 visualized by positron emission tomography in the brain of the living baboon: modulation by GABAergic transmission an relation with anticonvulsant activity. Exp Brain Res 1991;83:397–402.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Benavides, J., Abadie, P., Baron, J.C., Scatton, B. (1995). Comparative In vivo and In vitro Selectivity of Zolpidem for ω (Benzodiazepine) Modulatory Site Subtypes. In: Comar, D. (eds) PET for Drug Development and Evaluation. Developments in Nuclear Medicine, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0429-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0429-6_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4191-1

  • Online ISBN: 978-94-011-0429-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics