Skip to main content

Drug Development and Positron Emission Tomography

  • Chapter

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 26))

Abstract

The last few years have witnessed enormous changes and upheavals in the pharmaceutical industry, with the buying of wholesalers and healthcare distribution networks, almagamations, takeovers, and the loss of tens of thousands of jobs on both sides of the Atlantic. The reason is that it is becoming increasingly difficult to find, develop, and launch new drugs. Once on the market the returns on this research investment are being eroded with a shorter usable patent life, increased government restrictions on prescribing, parallel importation and emphasis towards cheaper generics. There is now a growing gap between the amount spent in drug research and sales growth (Figure 1). Indeed, it has been estimated by Lehman Brothers of London that only 4% of all drugs that are now being developed will reach a break-even sales target of more than $175. Over the last 10 years when money was available there has been a large investment in research with the hope that this would produce more effective medications. Unfortunately it has not been the case, and although it is too early to provide reasons for this failure there is the suggestion that too much effort has been invested in the use of receptor screening and biotechnology without investigating the functional consequences of these interactions in validated animal models. There is therefore a great need to streamline the discovery process to get into man as quickly as possible and find methods that can allow us to extrapolate the findings from animal studies to clinical trials. This brief review describes this process of drug development and how PET may be used advantageously.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR., Mylecharane EJ, Saxene PR, Humphrey M. VII International union of pharmacological classification of receptors for 5-hydroxytryptamine (Serotonin). Pharm Rev 1994;46:157–203

    PubMed  CAS  Google Scholar 

  2. Fowler CJ. Validity of human brain autopsy samples for characterising neurotransmitter function. TIPs 1988;9:232–234

    PubMed  CAS  Google Scholar 

  3. Duncan GE, Little KY, Kirkman JA, Koplas RS, Stump WE, Breese GR. Autoradiographic characterisation of [3H] imipramine and [3H] citalopram binding in rat and human brain: Species differences and relationships to serotonin innervation patterns. Brain Res 1992;591:181–197

    Article  PubMed  CAS  Google Scholar 

  4. Duncan GE, Little KY, Koplas RS, Kirkman JA, Breese GR, Stump WE. β-adrenergic receptor distribution in the human and rat hippocampal formation: marked species differences. Brain Res 1991;561:84–92

    Article  PubMed  CAS  Google Scholar 

  5. Kohler C, Chan-Palay V. Cholecystokinin-octapeptide (CCK-8) receptors in the hippocampal region: a comparative in vitro autoradiographic study in the rat, monkey and the post mortem brain. Neurosci Lett 1988;90:51–56

    Article  PubMed  CAS  Google Scholar 

  6. Palacios JM, Probst A, Cortes R. β-1-adrenoreceptors in the mammalian brain: similar pharmacology but different distribution in rodents and primates. Brain Res 1987;419:65–75

    Article  PubMed  CAS  Google Scholar 

  7. Porsolt RD. Animal model of depression. Biomedicine 1978;30:139–140

    Google Scholar 

  8. Edvinson L. Experimental headache models in animals and humans. TIPs 1995; 16: 5–9

    Google Scholar 

  9. Boxenbaum H. Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J Pharmacokinet 1982;10(2):201–227

    Article  CAS  Google Scholar 

  10. Campbell DB. Can allometric interspecies scaling be used to predict human kinetics? Drug Inf J 1994;28:235–245

    Article  Google Scholar 

  11. Doudet DJ, Miyake H, Finn RT, McLellan CA, Aigner TG, Wan RQ, Adams HR, Cohen RM. 6-18F-L-dopa imaging of the dopamine neostriatal system in normal and clinically normal MPTP treated rhesus monkeys. Exp Brain Res 1989;78:69–80

    Article  PubMed  CAS  Google Scholar 

  12. Kuhar MJ, Unnerstall JR, De souza EB. Receptor mapping in neuropharmacology by autoradiography: Some technical problems. NIDA Res Monogr 1985;62:1–12

    PubMed  CAS  Google Scholar 

  13. Morrison DF, Bungay PM, Hsiao JK, Mefford IN, Dykstra KH, Dedrick RL. Quantitative microdialysis. In: Microdialysis in the Neurosciences. Editors Robinson TE, Justice JB, Elsevier 1991:47–80

    Google Scholar 

  14. Turjanski N, Bum DJ, Lammertsma AA, Dolan R, Harding AE, Quinn N, Kennard C, Brooks DJ. PET studies on D1 and D2 receptor status in chorea. NEURA 1993;43:1563–1568

    CAS  Google Scholar 

  15. Bench CJ, Lammertsma AA, Dolan RJ, Grasby PM, Warrington SJ, Gunn K, Cuddington D, Turton DJ, Osman S, Fracjowiak RSJ. Dose dependent occupancy of central dopamine D2 receptors by the novel neuroleptic CP-88, 059-01: a study using positron emission tomography and 11-C raclopride PSYCHO 1993;112: 308–314

    Article  CAS  Google Scholar 

  16. Miyaoka RS, Lewellen TK, Bice AN. Dynamic high resolution imaging of rats: design considerations IEEE. Trans Nucl Sci 1991;38:670–677

    Article  CAS  Google Scholar 

  17. Cutler PD, Cherry SR, Hoffman EJ, et al. Design features and performance of a PET system for animal research. J Nucl Med 1993;33:595–604

    Google Scholar 

  18. Marriott CJ, Cadorette JE, Lecompte R, Scasnar V, Rousseau J, van Lier JE. High Resolution PET imaging and quantitation of pharmaceutical biodistribution in a small animal using avalanche photodiode detectors. J Nucl Med 1994;35:1390–1396

    PubMed  CAS  Google Scholar 

  19. Rogers WL, Slosar J, Hua L, Chiao P, Zhang Y, Clinthorne NH. A high resolution slit aperture for imaging small animal with SPECT. J Nucl Med 1993;34: 9P

    Google Scholar 

  20. Weber DA, Ivanovic M, Franceschi D, Strand S-E, Erlandsson K, Franceschi M, Atkins HL, Coderre JA, Susskind H, Button T, et al Pinhole SPECT: An approach to in vivo high resolution SPECT imaging in small laboratory animals. J. Nucl Med 1994;35:342–348

    PubMed  CAS  Google Scholar 

  21. Palmer J and Wollmer P. Pinhole emission computed tomography method and experimental evaluation. Phys Med Biol 1990;35:339–350

    Article  PubMed  CAS  Google Scholar 

  22. Hichwa R .Are animal scanners really necessary for PET? J Nucl Med 1994;35:1396–1397

    PubMed  CAS  Google Scholar 

  23. Lammertsma AA, Hume SP, Myer SR, Bloomfield PM, Rajeswaran S, Jones T. RAT-PET: a bridge between ex vivo animal and in vivo patient studies. In: Quantification of brain function, tracer kinetics and image analysis in brain PET Editor Uemura K. Amsterdam Elsevier Science Publications 1993: 321–326

    Google Scholar 

  24. Campbell DB. The use of kinetic-dynamic interactions in the evaluation of drugs Psychopharmacology 1990;100:430–450

    Article  Google Scholar 

  25. Campbell DB and Jochemsen R. Animal Pharmacokinetics and Toxicokinetics. In: International Pharmaceutical Product Registration. Editors AC Cartwright and BR Matthews Ellis Horwood 1994:569–639

    Google Scholar 

  26. Campbell DB. Are we doing too many animal biodisposition investigations before Phase I studies in man? A re evaluation of the timing and extent of ADME studies. Euro J Drug Metab Pharmacokinet 1994;19(3):283–293

    Article  CAS  Google Scholar 

  27. ICH Toxicokinetics: Guidance on the assessment of systemic exposure in toxicity studies step 5. 1994 ICH secretariat IFPMA 30 Rue de St Jean PO Box 9 1211 Geneva 18 Switzerland

    Google Scholar 

  28. FDA Guideline on the assessment of systematic exposure in toxicity studies; availability. Federal Register 60 040 60 FR 11264 March 1, 1995

    Google Scholar 

  29. Campbell DB. The use of toxicokinetics for the safety assessment of drugs acting in the brain. Molecular Neurobiology. In press 1995

    Google Scholar 

  30. ICH. Pharmacokinetics: Guidance for repeated Dose Tissue Distribution Studies Step 5. 1994. ICH secretariat IFPMA 30 Rue de St Jean PO Box 9 1211 Geneva 18 Switzerland

    Google Scholar 

  31. FDA Guideline on Repeated Dose Tissue Distribution Studies; Federal Register 60 040 60 FR 11274 March 1, 1995

    Google Scholar 

  32. Scheuer J. Animal preparations relevant for study with positron emission tomography or nuclear magnetic resonance. Circulation 1985;72:139–144

    Google Scholar 

  33. Elmaleh DR, Kizuka H, Hanson RN, Jones GS, Herman LW, Strauss HW. Structure- Localization Relationships of 11C-labeled Phentermine Derivatives: Effect of Aromatic Substitution. Appl Radiat Isot 1993;44:821–829

    Article  PubMed  CAS  Google Scholar 

  34. Livini E, Fischman AJ, Ray S, Elmaleh DR, Alpert NM, Weiss S, Correia JA Webb D, Dahl ER, Robeson W, Margouleff D, Liss R, Strauss HW, Rubin RH. Synthesis of 18F-labelled fluconazole and positron emission tomography studies in rabbits. Nucl Med Biol 1992;19:191–199

    Google Scholar 

  35. Livini E, Satterlee W, Robey RL, Alt CA, Van Meter EE, Babich JW, Wheeler WJ, O’Bannon DD, Thrall JH, Fischman AJ. Synthesis of [11C]dapoxetine.HCl, a serotonin re-uptake inhibitor: Biodisposition in rat and preliminary PET imaging in the monkey. Nucl Med Biol 1994;21:669–675

    Article  Google Scholar 

  36. Algbirhio F, Pike VW, Waters SL, Makepease J, Tanner RJ. Efficient and selective labelling of the CFC alternative 1,1,1-2 tetrafluroethane with fluorine-18 in the 1 position. J Chem Soc Chem Commun 1993; 1064–1065

    Google Scholar 

  37. Pike V and Tanner RGM. Study of disposition of a novel drug propellant 1,1,1, tetrafluoroethane in humans by labelling with fluorine-18 and whole body counting. Kluwer Academic Publishers The Netherlands (this journal) 1995

    Google Scholar 

  38. CPMP. Recommendations for the development of Non Clinical Strategies Draft 7 1990

    Google Scholar 

  39. Scales MDC and Mahoney K. Animal toxicological studies on new medicines and their relationship to clinical exposure: a review of international recommendations. Adverse Drug React Toxicol Rev 1991;10:155–168

    PubMed  CAS  Google Scholar 

  40. MHW. General Guidelines for the Clinical evaluation of new pharmaceuticals. 1988. Pharmaceutical Affairs Bureau of the Ministry of Health and Welfare Tokyo 39.

    Google Scholar 

  41. ICH3 (1993) Guidelines on Detection of Toxicity to Reproduction for Medicinal Products, Step 5 ICH secretariat IFPMA 30 Rue de St Jean PO Box 9 1211 Geneva 18 Switzerland

    Google Scholar 

  42. Gatehouse DG. Mutagenicity in International Pharmaceutical Product Registration Editors AC Cartwright and BR Matthews Ellis Horwood 1994:474–553

    Google Scholar 

  43. CPMP. Notes for Guidance on radiopharmaceuticals Pharmacol and Toxicol 1991;68:288–232

    Google Scholar 

  44. Matthews BR. Radiopharmaceutical: International Pharmaceutical Product Registration Editors AC Cartwright and BR Matthews. Ellis Horwood 1994:364–411

    Google Scholar 

  45. FDA. Guidelines for the clinical evaluation of radiopharmaceutical drugs, United States Department of Health and Human Services Public Health Service Food and Drug Administration October 1981

    Google Scholar 

  46. FDA. Draft guideline for submitting supporting chemistry documentation in radiopharmaceutical drug applications, Department of Health and Human Services, Public Health 1991

    Google Scholar 

  47. Myers R. Mitochondrial benzodiazepine receptor ligands as indicators of damage in the CNS: their application in positron emission tomography in Glesen-Crouse E Editor: Peripheral benzodiazepine receptors London: Academic Press 1993:235–273

    Google Scholar 

  48. Suehiro M Scheffel U, Dannals RF, Ricaurte GA, Ravert HT, Wagner HN. A PET radiotracer for studying serotonin uptake sites [11-C]McN-5652-Z. J Nucl Med 1993;34:120–127

    PubMed  CAS  Google Scholar 

  49. Jain RK. Physiological resistance to the treatment of solid tumors in drug resistance in oncology. Editor Teicher BA, Marcel Dekker 1993

    Google Scholar 

  50. Tilsley DWO, Harse RSA, Jones T, Avady F, Luthra SK, Brown G, Price P. New techniques in the pharmacokinetics analysis of cancer drugs in Positron Emission Tomography in pharmacokinetics and cancer chemotherapy. Editors Workman P, Graham MA. Cold Spring Harbor Laboratory Press 1993:425–442

    Google Scholar 

  51. DiChiro G, DeLaPaz RL, Brooks RA, et al. Glucose utilisation of cerebral gliomas measured by 18-F-2-deoxyglucose and PET. Neurobiology 1982;32:1323–1329

    CAS  Google Scholar 

  52. Patronas NJ, DiChiro G, Kufta C, et al. Prediction of survival time in glioma patients by means of PET. J. Neurosurg 1985;62:816–882

    Article  PubMed  CAS  Google Scholar 

  53. Price P. The use of labelled drugs at the stage of Phase I/II clinical trials and assessment of therapeutic efficacy of new agents using PET. Kluwer Academic Publishers (this journal) 1995

    Google Scholar 

  54. Peck CC, Barr WH, Benet LZ, Collins J, Desjardins RE, Furst DE, Harter JG, Levy G, Ludden T, et al. Opportunities for the integration of pharmacokinetics, pharmacodynamics and toxicokinetics in rational drug development. Pharm Res 1992;9:826–833

    Article  PubMed  CAS  Google Scholar 

  55. Ponto LB and Ponto JA. Uses and limitations of Positron Emission Tomography in clinical pharmacokinetics/dynamics (Part I). Clin Pharmacokinet. 1992;22:211–222

    Article  PubMed  CAS  Google Scholar 

  56. Ponto LB and Ponto JA. Uses and limitations of Positron Emission Tomography in clinical pharmacokinetics/dynamics (Part II). Clin Pharmacokinet. 1992;22:274–283

    Article  PubMed  CAS  Google Scholar 

  57. Sheiner LB and Benet LZ. Premarketing observational studies of population pharmacokinetics of new drugs. Clin Pharmacol Ther 1985;38:481–487

    Article  PubMed  CAS  Google Scholar 

  58. Harvey C, Lumley CE, Walker SR. A comparison of the review of a cohort of NCEs by four national regulation authorities. J. Pharmaceut Med. 1993;3:65–75

    Google Scholar 

  59. Wagner H. Disease as Dissonance. J Nucl Med 1994;35:13N-26N

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Campbell, B. (1995). Drug Development and Positron Emission Tomography. In: Comar, D. (eds) PET for Drug Development and Evaluation. Developments in Nuclear Medicine, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0429-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0429-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4191-1

  • Online ISBN: 978-94-011-0429-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics