Skip to main content

On the Search for Quantum Tunneling of Magnetization

  • Chapter
Quantum Tunneling of Magnetization — QTM ’94

Part of the book series: NATO ASI Series ((NSSE,volume 301))

Abstract

It is possible to observe experimental behavior that might be taken to be indicative of quantum tunneling of magnetization but is instead a manifestation of purely classical relaxation. We discuss a number of results that have a bearing on our ability to make such a discrimination, including sample characterization using scaling laws in the magnetic viscosity and the dynamical susceptibility (with expressions for both the classical and quantum regimes), temperature fluctuations, and domain wall tunneling across a domain wall junction for both ferromagnets and antiferromagnets. We also stress the importance of further theoretical and experimental studies of dissipation in magnetic relaxation, not only because of its strong effect on the WKB exponent, but also because of its effect on the strong temperature dependence of the prefactor in thermal relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clarke, J. et al (1988) Science 239, 992.

    Article  ADS  Google Scholar 

  2. Gunther, L. and Barbara, B. (1994) Phys Rev B49, 3926.

    ADS  Google Scholar 

  3. See, for example, Barbara B. and Gunther L. (1993) J. Mag. Mag. Mat. 128, 35.

    Article  ADS  Google Scholar 

  4. Slade, S., Gunther, L., Parker, F. and Berkowitz, A. (1994) reported at ICM-Warsaw and (1995) J. Mag. Mag Mat.140, 661.

    Article  ADS  Google Scholar 

  5. Gunther, L. (1989)J. Low Temp. Phys. 77, 151; Erratum: ibid 79, 225. The possibility that temperature fluctuations might lead to a threshhold observable temperature was also independently pointed out by Y. Imry.

    Article  ADS  Google Scholar 

  6. Stamp, P.C.E. (1988) Phys. Rev. Lett. 61, 2905.

    Article  ADS  Google Scholar 

  7. Chudnovsky, E.M., Iglesias, O., and Stamp, P.C.E. (1992) Phys. Rev. B 46, 5392.

    Article  ADS  Google Scholar 

  8. As pointed out in ref. 2, the DWJ can be fabricated so that the region of the DWJ is a well; once the DW is in the well, it experiences a barrier for leaving the well.

    Google Scholar 

  9. Barbara, B. and Chudnovsky, E.M. (1990) Phys. Lett. A145, 205.

    ADS  Google Scholar 

  10. Krive, I.V. and Zaslavsky, O.B. (1990) J. Phys. CM2, 9457.

    Google Scholar 

  11. Simanjuntak, H. (1994) J. Phys.: Condens. Matter 2925.

    Google Scholar 

  12. Street, R. and Wooley, J.C. (1949) Proc. Phys. Soc. A62, 562.

    ADS  Google Scholar 

  13. Gaunt, P. (1916) Phil. Mag. 34,775.

    Article  ADS  Google Scholar 

  14. Weil, L. (1954) J. Chim. Phys. 51, 715.

    Google Scholar 

  15. Bean, C. P. and Livingston, J. (1959) J. Appl. Phys. 30, 1025.

    Article  Google Scholar 

  16. Charap, S. H. (1988) J. Appl. Phys. 63, 2054.

    Article  ADS  Google Scholar 

  17. Oseroff, S.B., et al (1985) IEEE Trans. Mag. 21, 1495.

    Article  ADS  Google Scholar 

  18. Tobin, V.M., et al, (1988) ibid 24, 2880.

    ADS  Google Scholar 

  19. Tejada, J. and Zhang, X. these Proceedings.

    Google Scholar 

  20. Simanjuntak, H. these Proceedings.

    Google Scholar 

  21. A. Labarta, A., LI. Balcells, and F. Badia(1993) Phys. Rev. B 48 10240.

    Article  ADS  Google Scholar 

  22. Barbara, B., Dieny, B., and Filippi, J. (1990) J. Appl. Phys. 67, 5763.

    Article  ADS  Google Scholar 

  23. See ref. 18 as well as Dickson, D. P. E., Reid, N. M, Hunt, C, Williams, H.D., El-Hilo, M., and O’Grady, K. (1993) J. Magn. Magn. Mater. 125, 345.

    Article  ADS  Google Scholar 

  24. Gider S. and Awschalom D. D. see these Proceedings.

    Google Scholar 

  25. Kramers, H. A. (1940) Physica 8, 284.

    Article  MathSciNet  ADS  Google Scholar 

  26. For a further discussion of the role of dissipation in QTM see the review article on QTM, Gunther, L. (1992) Studies of Magnetic Properties of Fine Particles, Dormann, J.L. and Fiorani, D. (eds.), Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  27. Klik, I. and Gunther, L. (1990) J. Appl. Phys. 67,4505.

    Article  ADS  Google Scholar 

  28. Klik, I. and Gunther, L. (1990) J. Stat Phys. 60, 473.

    Article  ADS  Google Scholar 

  29. The results of this subsection were obtained while the author was at the QTM ’94 Workshop. The author is therefore especially grateful for the support of NATO in this regard.

    Google Scholar 

  30. Brown, W.F., Jr. (1963) Phys. Rev. 130, 1677.

    Article  ADS  Google Scholar 

  31. Gunther, L. (1989) J. Low Temp. Phys. 77, 151.

    Article  ADS  Google Scholar 

  32. Erratum (1990), ibid 79, 225.

    Google Scholar 

  33. Landau, L. D. and Lifshitz, E. M. (1959) Statistical Physics, chap. XII, Pergamon Press, Oxford.

    Google Scholar 

  34. Gunther, L. (1993) Nanomagnetism, p.153, Hernando, A. ed., Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  35. Bar’yakhtar, V.G., Ivanov, B.A., and Chetkin, M.V. (1985) Sov. Phys. Usp. 28 (7), 563.

    Article  ADS  Google Scholar 

  36. Bar’yakhtar, V.G., Ivanov, B.A., and Chetkin, M.V. Usp. Fiz. Nauk 146, 417 (1985).

    Article  Google Scholar 

  37. See article by Tatara and Fukuyama in section VI of these Proceedings; see also Stamp, P.E., Chudnovsky, E. and Barbara, B. (1992) Int. J. Phys. 6, 1355.

    Article  ADS  Google Scholar 

  38. Gunther, L. (1987), unpublished; (1990) Physics World 12, 28.

    Google Scholar 

  39. Williams, H.J., Schockley, W., and Kittel, C. (1950) Phys. Rev. 80, 1090.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gunther, L. (1995). On the Search for Quantum Tunneling of Magnetization. In: Gunther, L., Barbara, B. (eds) Quantum Tunneling of Magnetization — QTM ’94. NATO ASI Series, vol 301. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0403-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0403-6_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4180-5

  • Online ISBN: 978-94-011-0403-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics