Skip to main content

Unconventional Environments

NATO workshop on Tunneling of Magnetisation, June–July (1994)

  • Chapter
Quantum Tunneling of Magnetization — QTM ’94

Part of the book series: NATO ASI Series ((NSSE,volume 301))

  • 300 Accesses

Abstract

An analysis is given of some systems which do not behave as “conventional environments”. This means that the interaction between lowenergy excitations of the system and some external probe is either (a) not ~ 0(N -1/2), where N is the number of excitation degrees of freedom, or (b) not linear in the excitation coordinates, or (c) whilst formally ~O(N -1/2), it is infra-red divergent in a way which invalidates perturbation expansions.

The examples of v = 1/2 and Fractional Hall effects are extensively discussed, including much recent work on the new “singular gauge theory” of the FQHE. A comparative discussion is given of the Luttinger liquid with backscattering (solved recently by Prokof’ev), of domain wall tunneling in magnets, and of magnetic grain dynamics in a background spin environment.

It is seen that non-perturbative methods, outside the conventional approach, are necessary to understand these systems. Typically the experimental consequences of coupling to an unconventional environment are rather dramatic. Some of the consequences of the theory we discussed for the above examples with suggestions for experimental tests.

In the last few decades a very comprehensive “many-body” picture has evolved to describe the low-energy physics of condensed matter systems. According to this picture, if we immerse ourselves in a large or even mesoscopic quantum system (solid, liquid or gas) we will be surrounded by an “environmental sea” of excitations (collective modes, single particle excitations, etc) which are dilute at low energies or temperatures. If there axe N degrees of freedom in the system, the couplings ƒ ij between excitations |i〉 and |j〉 will be ~ O(1/N), and the couplings V j of |j〉 to an external probe will be ~ O(1/√N). We are all familiar with the canonical examples: 3He (normal, superfluid, solid, and quantum gas), 4He superfluid and solid, metals, semiconductors, superconductors, magnets, simple insulators, etc, etc. This is not to say that these environments are necessarily simple- the notorious complexity of the “Ohmic environments”, which was first unravelled in studies of the X-ray edge catastrophe [1] and the Kondo problem [2, 3, 4], demonstrates the contrary. Nevertheless they all have important features in common, which are made quite explicit in the Caldeira-Leggett theory of macroscopic quantum tunneling [5]. In this theory, the system excitations are described as bosonic oscillators ( an idea with a long history [6]) and their couplings to the outside world are not only ~ O(1/√N), but they are linear in the bosonic coordinates. This sort of model is also widely used in studies of “quantum dissipation” [7] and decoherence [8].

I will refer to quantum systems which can be described in this way as “conventional environments”; they are so pervasive that some writers seem to feel that all low-temperature systems can be so described. However, in this article I will describe “unconventional environments”, some way outside the conventional picture I have just sketched. In some cases the departures from conventional behaviour are quite subtle (as in the example of “composite fermions” in the Fractional Quantum Hall effect (FQHE) to be discussed below). In other cases, they can really be very radical, as in the example of spin environments (described briefly here, and in more detail in a companion article in this volume [9]). It is interesting to notice that, thus far, most of the interesting cases of unconventional environments seem to have arisen in magnetic systems of one kind or another.

In what follows I will spend a lot of time on the new “singular gauge theory” of both the FQHE and the v = 1/2 Hall effect. This theory is the result of a long effort on the part of both theorists and experimentalists to understand the FQHE in a way which goes beyond the Laughlin theory. Recent experiments, which give very strong evidence for the existence of a new kind of quasiparticle (the “composite fermion”) have led to a field theory which allows for the first time the calculation of many experimental quantities that were previously beyond the reach of anything but numerical small-size simulations. The situation is somewhat analogous to that in superconductivity, where the BCS theory (the analogue of Laughlin’s theory) revealed the basic structure, but one needed Gor’kov-Nambu-Eliashberg field theory to do realistic calculations, particularly for “strong coupling” superconductors. In the FQHE we are always in a strong-coupling regime, and so one absolutely needs a field theory. However there is a severe price to pay. The composite fermion singular gauge theory involves long-range unscreened interactions between the quasiparticles, which give rise to very unconventional behaviour, still not completely understood. Section I will be devoted to a description of recent progress here.

The FQHE simply represents one example of an “unconventional environment”. Others include the “1-dimensional Luttinger liquid with backscattering”, as well as examples more obviously related to this conference, such as magnetic domain walls interacting with magnons, or “central spins” interacting with their spin environment. There are also obvious connections between this last example and current work on disordered magnetic insulators and on the “quantum spin glass”. Each of these examples has its own story to tell. In section II I will say something about each one, and show how this leads us inevitably to a new “non-perturbative” picture of unconventional environments.

Finally in section III, as an antidote to all this theory, I will say something about how all this relates to experiment. This will be done for all the examples mentioned, but I will concentrate on those examples on which I am currently working (ie., I will only mention in passing the current experimental work on Luttinger liquids).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Roulet, J. Gavoret, P.Noziéres, Phys. Rev. 178, 1972, 1084 (1969)

    Article  ADS  Google Scholar 

  2. P. Noziéres, C. de Dominicis, ibid 1097 (1969).

    Google Scholar 

  3. P. W. Anderson, Phys. Rev. Lett. 18, 1049 (1967)

    Article  ADS  Google Scholar 

  4. P. W. Anderson, Phys. Rev. 164, 352 (1967).

    Article  ADS  Google Scholar 

  5. P. W. Anderson, G. Yuval, D.R. Hammann, Phys. Rev. B 2, 4464 (1970).

    Article  ADS  Google Scholar 

  6. K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975)

    Article  ADS  Google Scholar 

  7. A.O. Caldeira, A.J. Leggett, Ann. Phys. 149, 374 (1983)

    Article  ADS  Google Scholar 

  8. A.J. Leggett et al., Rev. Mod. Phys. 59, 1 (1987).

    Article  ADS  Google Scholar 

  9. Some milestone papers are, eg., F. Bloch, Z. f. Physik 81, 363 (1933)

    Article  ADS  MATH  Google Scholar 

  10. F. Bloch, Helv. Phys. Acta 7, 385 (1934)

    Google Scholar 

  11. S. Tomonaga, Prog. Th. Phys. 5, 349 (1950)

    Google Scholar 

  12. D. Bohm, E. P. Gross, Phys. Rev. 75, 1851,1864 (1949)

    Article  ADS  MATH  Google Scholar 

  13. R.P. Feynman, F.L. Vernon, Ann. Phys. 24 118 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  14. See ref. [5], and also A.O. Caldeira, A.J. Leggett, Phys. Rev. A 31, 1059 (1985).

    Article  ADS  Google Scholar 

  15. N.V. Prokof’ev and P.C.E. Stamp, in this volume.

    Google Scholar 

  16. S. Girvin and A. MacDonald, Phys. Rev. Lett. 58, 1252 (1987).

    Article  ADS  Google Scholar 

  17. S.C. Zhang, Int. J. Mod. Phys. B 6, 25 (1992), and refs. therein.

    Article  ADS  Google Scholar 

  18. N. Read, Phys. Rev. Lett. 62, 86 (1989).

    Article  ADS  Google Scholar 

  19. J.K. Jain, Phys. Rev. Lett. 63, 199 (1989)

    Article  ADS  Google Scholar 

  20. J.K. Jain, Phys. Rev. B 40, 8079 (1989)

    Article  ADS  Google Scholar 

  21. J.K. Jain, Phys. Rev. B 41, 7653 (1990).

    Article  ADS  Google Scholar 

  22. Energy gaps: R.R. Du et al. Phys. Rev. Lett. 70, 2944 (1993)

    Article  ADS  Google Scholar 

  23. SdH oscillations: D.R. Leadley et al., Phys. Rev. Lett. 72, 1906 (1994)

    Article  ADS  Google Scholar 

  24. Geomeiric effects: R.L. Willett et al., Phys. Rev. Lett. 71, 3846 (1993)

    Article  ADS  Google Scholar 

  25. W. Kang et al., Phys. Rev. Lett. 71, 3850 (1993)

    Article  ADS  Google Scholar 

  26. V.J. Goldman et al., Phys. Rev. Lett. 72, 2065 (1994).

    Article  ADS  Google Scholar 

  27. B.I. Halperin, P.A. Lee, N. Read, Phys. Rev. B 47, 7312 (1993)

    Article  ADS  Google Scholar 

  28. A. Lopez, E.Fradkin, Phys. Rev. B 44, 5246 (1991)

    Article  ADS  Google Scholar 

  29. A. Lopez, E.Fradkin, Phys. Rev. B 47, 7080 (1993).

    Article  ADS  Google Scholar 

  30. N.V. Prokof’ev, Phys. Rev. B 49,2148 (1994).

    Article  ADS  Google Scholar 

  31. A. Gogolin, Phys. Rev. Lett. 71, 2995 (1993).

    Article  ADS  Google Scholar 

  32. It was suggested by K. Awaka, G. Tatara, and H. Fukuyama. J. Phys. Soc. Jap.62, 1939 (1993), that a strongly disordered 3-d electronic system will behave sub-Ohmically near the Anderson transition. Notice, however, that their similar suggestion for Luttinger liquids contradicts ref [16].

    Article  ADS  Google Scholar 

  33. See P. A. Lee, N. Nagaosa, Phys. Rev. B 46, 5621 (1992), and refs. therein.

    Article  ADS  Google Scholar 

  34. B. I. Halperin, Phys. Rev. Lett. 52, 1583 (1984).

    Article  ADS  Google Scholar 

  35. R. B. Laughlin, Phys. Rev. Lett. 50, 141 (1983).

    Article  MathSciNet  Google Scholar 

  36. J. M. Leinaas and R. Myrheim, Nuovo Cim B37, 1 (1977).

    Article  ADS  Google Scholar 

  37. See e.g. M. Stone, Phys. Rev. B 42, 212 (1990).

    Article  ADS  Google Scholar 

  38. J. Gan, E. Wong, Phys. Rev. Lett. 71, 4226 (1993).

    Article  ADS  Google Scholar 

  39. D.V. Khveschenko, P.C.E. Stamp, Phys. Rev. Lett. 71, 2118 (1993).

    Article  ADS  Google Scholar 

  40. D.V. Khveschenko, P.C.E. Stamp, Phys. Rev. B 49, 5227 (1994).

    Article  ADS  Google Scholar 

  41. L.B. Ioffe, D. Lidsky, B.L. Altshuler, Phys. Rev. Lett. 73, 472 (1994); B.L. Altshuler, L.B. Ioffe, A.J. Millis, preprint (July 1994).

    Article  ADS  Google Scholar 

  42. P.C.E. Stamp, Phys. Rev. Lett. 68, 2180 (1992).

    Article  ADS  Google Scholar 

  43. P.C.E. Stamp, J. de Physique I (Fr.) 3, 625 (1993).

    Article  ADS  Google Scholar 

  44. P.C.E. Stamp and S.Curnoe, to be published.

    Google Scholar 

  45. J.M. Luttinger, Phys. Rev. 121, 1251 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. S. Engelsberg, G. Simpson, Phys. Rev. B 2, 1657 (1970).

    Article  ADS  Google Scholar 

  47. M. Elliot, T. Ellis, M. Springford, Phys. Rev. Lett. 41, 709 (1978).

    Article  ADS  Google Scholar 

  48. In this context, see the discussion in P.C.E. Stamp, Europhys. Lett. 4, 453 (1987).

    Article  ADS  Google Scholar 

  49. Y.B. Kim, P.A. Lee, X.G. Wen, P.C.E. Stamp, submitted to Phys. Rev. B .

    Google Scholar 

  50. M. Dubé, P.C.E. Stamp, to be published

    Google Scholar 

  51. J. Schwinger, Phys. Rev. 82, 664 (1951).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. R.P. Feynman, Phys. Rev. 84, 108 (1951).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. B.S. de Witt, Phys. Rev. 162, 1195 (1967).

    Article  ADS  Google Scholar 

  54. J.B. Hartle, S. Hawking, Phys. Rev. A 13, 2188 (1976).

    ADS  Google Scholar 

  55. A.V. Svidzinsky, J.E.T.P. 4, and S.M. Christensen, Phys. Rev. A 14, 2490 (1976).

    Google Scholar 

  56. F.D. M. Haldane, J. Phys. C 14, 2585 (1981)

    Article  ADS  Google Scholar 

  57. T. Ogawa, A. Furusaki, N. Nagaosa, Phys. Rev. Lett. 68, 3638 (1992).

    Article  ADS  Google Scholar 

  58. DKK Lee and Y.Chen, Phys. Rev. Lett. 69, 1399 (1992).

    Article  ADS  Google Scholar 

  59. C.L. Kane, M.P.A. Fisher, Phys. Rev. Lett. 68, 1220 (1992).

    Article  ADS  Google Scholar 

  60. C.L. Kane, M.P.A. Fisher, Phys. Rev. B 46, 15233 (1992).

    Article  ADS  Google Scholar 

  61. A.H. Castro Neto, E. Fradkin, Phys. Rev. Lett. 72, 1393 (1994).

    Article  ADS  Google Scholar 

  62. A.H. Castro Neto, E. Fradkin, Phys. Rev B 49, 10877 (1994)

    Article  Google Scholar 

  63. A. Houghton, J.B. Marston, Phys. Rev. B 48, 7790 (1993), and to be published.

    Article  ADS  Google Scholar 

  64. A.Luther, Phys. Rev. B 19, 320 (1979).

    Article  ADS  Google Scholar 

  65. F.D.M. Haldane, Helv. Phys. Acta 65, 152 (1992), and to be published.

    Google Scholar 

  66. G.M. Carneiro, C.J. Pethick, Phys. Rev. A 7, 304 (1973).

    Article  ADS  Google Scholar 

  67. G.M. Carneiro, C.J. Pethick, Phys. Rev. B 11, 1106 (1975).

    Article  ADS  Google Scholar 

  68. H.-J. Kwon, A. Houghton, J.B. Marston, Phys. Rev. Lett. 73, 284 (1994).

    Article  ADS  Google Scholar 

  69. N. Giordano, J. D. Monnier, Physica B 194–196, 1009 (1994); and in this volume.

    Article  Google Scholar 

  70. P.C.E. Stamp, Phys. Rev. Lett. 66 , 2802 (1991).

    Article  ADS  Google Scholar 

  71. P.C.E. Stamp, E.M. Chudnovsky, B.Barbara, Int. J. Mod. Phys. B6, 1355 (1992).

    Article  ADS  Google Scholar 

  72. P.C.E. Stamp, Physica B197, 133 (1994).

    Article  ADS  Google Scholar 

  73. E.M. Chudnovsky, O. Iglesias, P.C.E. Stamp, Phys. Rev. B 46, 5392 (1992).

    Article  ADS  Google Scholar 

  74. A. J. Leggett, Phys. Rev. B 30, 1208 (1984).

    Article  ADS  Google Scholar 

  75. G. Tatara, H. Fukuyama, Phys. Rev. Lett. 72, 772 (1994)

    Article  ADS  Google Scholar 

  76. G. Tatara, H. Fukuyama, J. Phys. Soc. Jap.63, 2540 (1994).

    ADS  Google Scholar 

  77. N. V. Prokof’ev, P.C.E. Stamp, J. Phys. CM 5, L663 (1993).

    Google Scholar 

  78. N. V. Prokof’ev, P.C.E. Stamp, to be published.

    Google Scholar 

  79. See, eg., X.G. Wen, Int J. Mod. Phys. B6, 1711 (1992).

    ADS  Google Scholar 

  80. See, eg.,N. d’Ambrumenil, R. H. Morf, Phys. Rev. B 40 , 6108 (1989).

    Article  ADS  Google Scholar 

  81. J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 68, 674(1992); and preprint.

    Article  ADS  Google Scholar 

  82. Y.B. Kim, A. Furusaki, P.A. Lee, X.G. Wen, MIT preprint.

    Google Scholar 

  83. S.H. Simon, B.I. Halperin, Phys. Rev. B 48, 17368 (1993)

    Article  ADS  Google Scholar 

  84. See, eg., Y. Kagan, N.V. Prokof’ev, Phys. Lett. 159, 289 (1991).

    Article  Google Scholar 

  85. C. Zhang, P.C.E. Stamp, J. Phys. CM Lett 4, L549 (1992).

    Google Scholar 

  86. U. Eckern, G. Schon, V. Ambegaokar, Phys. Rev. Lett. 48, 1745 (1982).

    Article  ADS  Google Scholar 

  87. U. Eckern, G. Schon, V. Ambegaokar, Phys. Rev. B 30, 6419 (1984).

    Article  ADS  Google Scholar 

  88. B. Barbara, in this volume.

    Google Scholar 

  89. J. Tejada, in this volume.

    Google Scholar 

  90. P.C.E. Stamp, to be published.

    Google Scholar 

  91. C. T. Muruyama, W.G. Clark, J. Sanny, Phys. Rev. B 29, 6063 (1984).

    Article  ADS  Google Scholar 

  92. D.D. Awschalom et. al., Phys. Rev. Lett. 68, 3092 (1992); and in this volume.

    Article  ADS  Google Scholar 

  93. D.P. di Vincenzo, in this volume.

    Google Scholar 

  94. J. Villain, F. Hartman-Boutron, R. Sessoli, A. Rettori, Europhys. Lett. 27, 159 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stamp, P.C.E. (1995). Unconventional Environments. In: Gunther, L., Barbara, B. (eds) Quantum Tunneling of Magnetization — QTM ’94. NATO ASI Series, vol 301. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0403-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0403-6_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4180-5

  • Online ISBN: 978-94-011-0403-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics