Skip to main content

Water Quality Models for Watershed Management

  • Chapter
Water-Quality Hydrology

Part of the book series: Water Science and Technology Library ((WSTL,volume 16))

Abstract

Several water quality models are available for use in assessing the effects of agricultural management on the environment. Since these models are being used to solve a variety of water quality problems, they vary considerably in structure and complexity. For example, simple screening models may be adequate and appropriate for identifying potential pollutant sources. However, more comprehensive models are needed in comparing agricultural management effects on chemical transport by runoff and sediment. Model requirements may also vary depending upon temporal and spatial scales, cost, and risk associated with proposed projects.

Some of the most widely used water quality models, particularly those most useful in agricultural management are described briefly. Two of the models, the Erosion-Productivity Impact Calculator (EPIC) and the Simulator for Water Resources in Rural Basins (SWRRB), are presented in more detail to serve as examples of field and watershed scale water quality models. These models were selected because they feature convenient and comprehensive agricultural and soil management components. For example, EPIC is useful in solving management problems involving crop varieties and rotations, tillage, furrow diking, irrigation, drainage, fertilization, pest control, weather variation, atmospheric CO2 concentration, erosion (wind and water), water quality (nutrients and pesticides), manure handling, crop residue management, liming, and grazing. The model operates on a daily time step and is capable of simulating hundreds of years if necessary. It is also useful in solving short term (within growing season) management problems operating in a real time mode. The SWRRB model was designed for solving watershed scale problems like water supply and quality (nutrients and pesticides), pond and reservoir design, groundwater flow contributions, irrigation water transfer, and stream channel routing of sediment and agrichemicals. SWRRB also operates on a daily time step and allows watershed subdivision. Subdivisions are made to account for spatial variability of soils, land use, weather, and topography. This gives SWRRB the capability to estimate off-site impacts including channel and reservoir deposition and total water supplies. Example applications of EPIC and SWRRB to water quality problems are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, J. G. 1990. ‘ROTO-A continuous water and sediment routing model. ASCE Proc. of the Watershed Management Symposium’. Durango, CO. pp. 480–488.

    Google Scholar 

  2. Arnold, J. G. and C. O. Stockle. 1991. ‘Simulation of supplemental irrigation from on-farm ponds’. ASCE J. Irrig. and Drainage 117(3):408–424.

    Article  Google Scholar 

  3. Arnold, J. G. and J. R. Williams. 1987. ‘Validation of SWRRB--Simulator for water resources in rural basins’. J. Water Resources Planning and Manage., ACSW, 113(2):243–256.

    Article  Google Scholar 

  4. Arnold, J. G., M. D. Bircket, J. R. Williams, W. F. Smith, and H. N. McGill. 1988. ‘Modeling the effects of urbanization on basin water yield and reservoir sedimentation’. Water Resources Bull. 23(6):1021–1029.

    Google Scholar 

  5. Arnold, J. G., J. R. Williams, A. D. Nicks, and N. B. Sammons. 1990. ‘SWRRB-A basin scale simulation model for soil and water resources management’. Texas A&M University Press, College Station, TX. 255 pp.

    Google Scholar 

  6. Bagnold, R. A. 1977. ‘Bedload transport by natural rivers’. Water Resources Res. 13(2):303–312.

    Article  Google Scholar 

  7. Beasley, D. B. and L. F. Huggins. 1982. ‘ANSWERS -Users manual’. EPA-905/9-82-001, USEPA, Region 5, Chicago, IL. 54 pp.

    Google Scholar 

  8. Benson, V. W., H. C. Bogusch, Jr., and J. R. Williams. 1990a.‘Evaluating alternative soil conservation and crop tillage practices with EPIC.’ pp. 91–93 In P. W. Unger, T. V. Sneed, W. R. Jordan, R. Jenson (eds.) Proc. Intl. Conf. on Dryland Farming, Challenges in Dryland Agriculture -A Global Perspective, Aug. 1988, Amarillo/Bushland, TX. Texas Agri. Exp. Stn., 965 pp.

    Google Scholar 

  9. Benson, V. W., W. A. Goldstein, D. L. Young, J. R. Williams, C. A. Jones, and J. R. Kiniry. 1990b. ‘Impacts of integrated cropping practices on nitrogen use and movement’, pp. 426–428 In P. W. Unger, T. V. Sneed, W. R. Jordan, R. Jenson (eds.) Proc. Intl. Conf. on Dryland Farming, Challenges in Dryland Agriculture -A Global Perspective, Aug. 1988, Amarillo-Bushland, TX. Texas Agric. Exp. Stn., 965 pp.

    Google Scholar 

  10. Carsel, R. F., C. N. Smith, L. A. Mulkey, J. D. Dean, and P. Jowise. 1984. ‘User’s manual for the pesticide root zone model (PRZM): Release 1’. EPA-600/3-84-109. U.S. Environmental Protection Agency. Environmental Research Laboratory, Athens, GA.

    Google Scholar 

  11. Cole, G.W., L. Lyles, and L.G. Hagen. 1982. ‘A simulation model of daily wind erosion soil loss’. ASAE Paper #82-2575.

    Google Scholar 

  12. Dean, J. D., P. S. Huyakorn, A. S. Donigian, Jr., K. A. Voos, R. W. Schanz, Y. J. Meeks, and R. F. Carsel. 1989. ‘Risk of unsaturated/saturated transport and transformation of chemical concentrations (RUSTIC)’. EPA/600/3-89/048a. U.S. Environmental Protection Agency. Environmental Research Laboratory, Athens, GA.

    Google Scholar 

  13. Donigian, A. S. and W. C. Huber. 1990. ‘Modeling of nonpoint source water quality in urban and non-urban areas’. U.S. Environmental Protection Agency, Athens, GA. Contract No. 68-03-3513 (Draft).

    Google Scholar 

  14. Engel, B. A. and J. G. Arnold. 1991. ‘Agricultural non-point source pollution control using spatial decision support systems’. (Draft).

    Google Scholar 

  15. Foster, G. R. and L. D. Meyer. 1972. ‘A closed-form soil erosion equation for upland areas.’ In H. Shen (ed.), Sedimentation, Colorado State University, Fort Collins, CO, Chapter 12.

    Google Scholar 

  16. Foster, G. R., L. J. Lane, J. D. Nowlin, J. M. Laflen, and R. A. Young. 1980. ‘A model to estimate sediment yield from field-sized areas: development of model’. In W. G. Knisel (ed.) CREAMS, A field scale model for chemicals, runoff, and erosion from agricultural manaaaagement systems. U.S. Dep. Agric. Conserv. Res. Report, Chapter 3, pp. 36–64.

    Google Scholar 

  17. Fribourg, H. A., D. D. Tyler, V. W. Benson, J. R. Williams, J. G. Graveel, J. Logan, and G. R. Wells. ’Environmentally sould agricultural soil use--prediction of yield, erosion and other off-site effects from corn production’. (Mimeo handout)

    Google Scholar 

  18. Godwin, D. C., C. A. Jones, J. T. Ritchie, P. L. G. Vlek, and L. G. Youngdahl. 1984. ‘The water and nitrogen components of the CERES models’. In ICRISAT (International Crops Research Institute for the Semi-Arid Tropics). Proc. Internatl. Symp. on Minimum Data Sets for Agrotechnology Transfer. March 21–26, 1983. pp. 95–100. Patancheru, India: ICRISAT Center.

    Google Scholar 

  19. Goldstein, W. A. and D. L. Young. 1987. ‘An agronomic and economic comparison of a conventional and low-input system in the Palouse’. American Journal of Alternative Agriculture. Spring 51–56.

    Google Scholar 

  20. Hargreaves, G.H. and Z.A. Samani. 1985. ‘Reference crop evapotranspiration from temperature’. Appl. Engr. in Agric. 1:96–99.

    Google Scholar 

  21. Hoist, R. W. and L. L. Kutney. 1987. ‘U.S. EPA simulator for water resources in rural basins (EPA-SWRRB)’. (Draft)

    Google Scholar 

  22. Huggins, L. F. and E. J. Monke. 1966. ‘The mathematical simulation of the hydrology of small watersheds’. Technical Report 1, Water Resources Research Center, Purdue University, West Lafayette, IN. 130 pp.

    Google Scholar 

  23. Johansen, N. B., J. C. Imhoff, J. L. Kittle, and A. S. Donigian. 1984. ‘Hydrological Simulation Program--Fortran (HSPF): User’s manual for release 8’. EPA-600/3-84-066. U.S. Environmental Protection Agency, Athens, GA.

    Google Scholar 

  24. Jones, C.A. 1983. ‘Effect of soil texture on critical bulk densities for root growth’. Soil Sci. Soc. Amer. J. 47:1208–1211.

    Article  Google Scholar 

  25. Jones, C.A., C.V. Cole, A.N. Sharpley, and J.R. Williams. 1984. ‘A simplified soil and plant phosphorus model. I. Documentation’. Soil Sci. Soc. Am. J. 48:800–805.

    Article  Google Scholar 

  26. Kletke, D.D. 1979. ‘Operation of the enterprise budget generator’. Oklahoma State Univ., Agric. Exp. Sta. Res. Report P-790.

    Google Scholar 

  27. Knisel, W. G. (ed.). 1980. ‘CREAMS: A field scale model for chemicals, runoff, and erosion from agricultural management systems’. USDA, Conservation Research Report No. 26. 643 pp.

    Google Scholar 

  28. Lane, L. J. 1982. ‘Distributed model for small semi-arid watersheds’. J. Hydraulic Eng., ASCE, 109(HY10):1114–1131.

    Google Scholar 

  29. Leonard, R. A., W. G. Knisel, and D. A. Still. 1987. ‘GLEAMS: Groundwater loading effects of agricultural management systems’. Trans. ASAE 30(5):1403–1428.

    Google Scholar 

  30. McElroy, A. D., S. Y. Chiu, J. W. Nebgen, A. Aleti, and F. W. Bennett. 1976. ‘Loading functions for assessment of water pollution from nonpoint sources’. Environmental Protection Tech. Series, USEPA, EPA 600/2-76-151. 445 pp.

    Google Scholar 

  31. Meisinger, J. J., W. L. Hargrove, R. L. Mikkelsen, J. R. Williams, and V. W. Benson. 1991. ‘Effects of cover crops on groundwater quality’, pp. 57–68 In W. L. Hargrove (ed.) Cover Crops for Clean Water. Proc. Intl. Conf., April 9–11, 1991, Jackson, TN. Soil Water Conserv. Soc.

    Google Scholar 

  32. Monteith, J.L. 1965. ‘Evaporation and environment’. Symp. Soc. Exp. Biol. 19:205–234.

    Google Scholar 

  33. Nicks, A. D. 1974. ‘Stochastic generation of the occurrence, pattern, and location of maximum amount of daily rainfall’. pp. 154–171 In Symp. on Statistical Hydrology, Aug.-Sept. 1971, Tucson, AZ. Mis. Publ. No. 1275.

    Google Scholar 

  34. Nicks, A. D. and F. A. Igo. 1980. ‘A depth-area-duration model of storm rainfall in the Southern Plains’. Water Resources Res. 16(5):939–945.

    Article  Google Scholar 

  35. Office of Technology Assessment. 1982. ‘Use of model for water resources management, planning, and policy’. Summary, Six Chapters and Appendix. U.S. Gov’t. Printing Office, Washington, DC.

    Google Scholar 

  36. Onstad, C.A. and G.R. Foster. 1975. ‘Erosion modeling on a watershed’. Trans. ASAE 18:288–292.

    Google Scholar 

  37. Penman, H.L. 1948. ‘Natural Evaporation from Open, Bare Soil and Grass’. Proc. Royal Soc. (London) A193:120–145.

    Article  Google Scholar 

  38. Phillips, D. L., P. D. Hardin, V. W. Benson, and J. V. Baglio. ‘Using the national resources inventory and the EPIC model to evaluate the impact of alternative agricultural management practices in Illinois’. Submitted to the Jour. Soil and Water Conserv. (Mimeo handout)

    Google Scholar 

  39. Priestley, C.H.B. and R.J. Taylor. 1972. ‘On the assessment of surface heat flux and evaporation using large scale parameters’. Monthly Weather Review. 100:81–92.

    Article  Google Scholar 

  40. Reddy, K. R., R. Khaleel, M. R. Overcash, and P. W. Westerman. 1979a. ‘A nonpoint source model for land areas receiving animal wastes: I. Mineralization of organic nitrogen’. Trans. ASAE 22(4):863–872.

    Google Scholar 

  41. Reddy, K. R., R. Khaleel, M. R. Overcash, and P. W. Westerman. 1979b. ‘A nonpoint source model for land areas receiving animal wastes: II. Ammonia volatilization’. Trans. ASAE 22(6):1398–1404.

    Google Scholar 

  42. Richardson, C. W. 1981. ‘Stochastic simulation of daily precipitation, temperature, and solar radiation’. Water Resources Res. 17:182–190.

    Article  Google Scholar 

  43. Richardson, C. W. 1982a. ‘Dependence structure of daily temperature and solar radiation’. Trans. ASAE 25:735–739.

    Google Scholar 

  44. Richardson, C. W. 1982b. ‘A wind simulation model for wind erosion estimation’. ASAE Paper No. 82-2576.

    Google Scholar 

  45. Ritchie, J.T. 1972. ‘A model for predicting evaporation from a row crop with incomplete cover’. Water Resources Res. 8:1204–1213.

    Article  Google Scholar 

  46. Seligman, N.G. and H. van Keulen. 1981. ‘PAPRAN: A simulation model of annual pasture production limited by rainfall and nitrogen’. In Simulation of Nitrogen Behaviour of Soil-Plant Systems, M.J. Frissel and J.A. van Veen, eds. (Wageningen, The Netherlands, Jan. 28-Feb 1, 1980), 192–221.

    Google Scholar 

  47. Shaffer, M. J. 1991. ‘Various chapters In R. F. Follett (ed.) Managing Nitrogen for Groundwater Quality and Farm Profitability’. ASAE Monograph. (in press)

    Google Scholar 

  48. Sharpley, A. N. and J. R. Williams (eds.) 1990. ‘EPIC--Erosion/Productivity Impact Calculator: 1. Documentation’. USDA Tech. Bull. #1768. 235 pp.

    Google Scholar 

  49. Singer, M. P., F. D. Arnold, R. H. Cole, J. G. Arnold, and J. R. Williams. 1988. ‘Use of SWRRB computer model for the national coastal pollutant discharge inventory’. In Proc. AWRA Symp. on Coastal Water Resources, 119–132.

    Google Scholar 

  50. Sloan, P. G. and I. D. Moore. 1984. ‘Modeling subsurface stormflow on steeply sloping forested watersheds’. Water Resources Research 20(12):1815–1822 .

    Article  Google Scholar 

  51. U.S. Department of Agriculture, Soil Conservation Service. 1972. ‘Hydrology’. Chapters 4–10. In National Engineering Handbook. USA Government Printing Office.

    Google Scholar 

  52. U.S. Department of Agriculture, Soil Conservation Service. 1983. ‘Hydrology’. Section 4, Chapter 19. National Engineering Handbook. USA Government Printing Office.

    Google Scholar 

  53. Williams, J. R. 1975a. ‘Sediment-yield prediction with universal equation using runoff energy factor’. In Present and Prospective Technology for Predicting Sediment Yield and Sources, USDA, ARS-S-40, pp. 224–252.

    Google Scholar 

  54. Williams, J. R. 1975b. ‘Sediment routing for agricultural watersheds’. Water Resources Bulletin, AWRA 11(5):965–974.

    Article  Google Scholar 

  55. Williams, J. R. 1980. ‘SPNM, a model for predicting sediment, phosphorus, and nitrogen yields from agricultural basins’. Water Resources Bulletin, AWRA, 16(5):843–848.

    Article  Google Scholar 

  56. Williams, J. R. and R. W. Haan. 1978. ‘Optimal operation of large agricultural watersheds with water quality constraints’. Texas Water Resources Inst., Texas ASM Univ., TR-96. 152 pp.

    Google Scholar 

  57. Williams, J. R. and A. D. Nicks. 1982. ‘CREAMS hydrology model--Option one’. pp. 69–86 In V. P. Singh (ed.) Applied Modeling Catchment Hydrology. Proc. Intl. Symp. Rainfall-Runoff Modeling, May 18–21, 1981, Mississippi State, MS.

    Google Scholar 

  58. Williams, J. R., C. A. Jones, and P. T. Dyke. 1984. ‘A modeling approach to determining the relationship between erosion and soil productivity’. Trans. ASAE 27(1):129–144.

    Google Scholar 

  59. Williams, J. R., C. A. Jones, and P. T. Dyke. 1990. ‘The EPIC model’. Chapter 2, pp. 3–02 In A. N. Sharpley and J. R. Williams (eds.) EPIC-Erosion/Productivity Impact Calculator: 1 Model Documentation. USDA Tech. Bull. No. 1768. 235 pp.

    Google Scholar 

  60. Williams, J. R., A. D. Nicks, and J. G. Arnold. 1985. ‘SWRRB, a simulator for water resources in rural basins’. ASCE Hydraulics Journal, 111(6):970–986.

    Article  Google Scholar 

  61. Wischmeier, W. H. and D. D. Smith. 1978. ‘Predicting rainfall erosion losses’. Agriculture Handbook 537, USDA, SEA, 58 pp.

    Google Scholar 

  62. Woodruff, N.P. and F.H. Siddoway. 1965. ‘A wind erosion equation’. Soil Sci. Soc. Amer. Proc. 29:602–608.

    Article  Google Scholar 

  63. Young, R. A., C. A. Onstad, D. D. Bosch, and W. P. Anderson. 1987. ‘AGNPS, agricultural non-point-source pollution model. A Watershed Analysis Tool’. 1987. U.S. Department of Agriculture, Conservation Research Report 35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Williams, J.R., Arnold, J.G. (1996). Water Quality Models for Watershed Management. In: Singh, V.P., Kumar, B. (eds) Water-Quality Hydrology . Water Science and Technology Library, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0393-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0393-0_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4176-8

  • Online ISBN: 978-94-011-0393-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics