Skip to main content

Part of the book series: Water Science and Technology Library ((WSTL,volume 16))

  • 292 Accesses

Abstract

Mathematical and computational properties of kinematic wave models in hydrology are reviewed and discussed. Special attention is paid to questions relating to the formation and propagation of shocks as well as the presence of numerical diffusion in certain finite difference schemes. As shocks and shock structures (the latter obtained from higher-order “parent” models) travel with the same celerity, locally increased error in the vicinity of a solution discontinuity does not invalidate the kinematic model. Care must be taken, however, in the evaluation of numerical results, as parasitic oscillations may develop. Numerical diffusion inherent in several numerical schemes should either be suppressed or matched to a previously determined amount of physical diffusion. The practical usefulness of kinematic models in hydrology is discussed, and so are certain recent modelling attempts aiming beyond the micro-catchment scale. Finally, fields of future research are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, M.B., 1979. Computational Hydraulics. Pitman Publishing Ltd., London.

    Google Scholar 

  • Beven, K., 1982. On subsurface stormflow: Predictions with simple kinematic theoryWater Resour. Res. ,18(6): 1627 – 1633.

    Article  Google Scholar 

  • Blandford, G.E. and Meadows, M.E., 1990. ’Finite element simulation of nonlinear kinematic surface runoff. J. Hydrol. ,119: 335–356.

    Article  Google Scholar 

  • Borah, D.K., Prasad, S.N. and Alonso, C.V., 1980. ‘Kinematic wave routing incorporating shock fitting’. Water Resour. Res. ,16(3): 529–541.

    Article  Google Scholar 

  • Brakensiek, D.L., 1967. ‘Simulated watershed flow system for hydrograph prediction: A kinematic application’. Proc. Int. Hydrol. Symp. ,Fort Collins, Collerado, Pap. No.3.

    Google Scholar 

  • Brazil, L.E., Sanders, T.G. and Woolhiser, D.A., 1979. ‘Kinematic parameter estimation for transport of pollutants in overland flow’. In: Surface and Subsurface Hydrology (H.J. Morel-Seytoux, editor), Water Res. Publ.: 555–568.

    Google Scholar 

  • Charbeneau, R.J., 1984. ‘Kinematic models for soil moisture and solute transport’. Water Resour. Res. ,20(6): 699–706.

    Article  Google Scholar 

  • Chen, C.-N. and Wong, T.S.W., 1987. ‘Comparison of kinematic wave and rational methods for site drainage design’. Proc. XXII Congress IAHR ,Lausanne, Techn. Session D: 264–269.

    Google Scholar 

  • Croley, 11., T.E. and Hunt, B., 1981. ‘Multiple-valued and non-convergent solutions in kinematic cascade models’. J. Hydrol. ,49: 121–138.

    Article  Google Scholar 

  • Cunge, J.A., 1969. ‘On the subject of a flood propagation method (Muskingum method)’. J. Hydr. Res. ,7(2): 205–230.

    Article  Google Scholar 

  • Dawdy, D.R., 1990. Discussion of ‘Kinematic wave routing and computational error’, J. Hydr.Engrg. ,ASCE, 116(2): 278–280.

    Article  Google Scholar 

  • Dooge, J.C.I., 1973. ‘Linear theory of hydrologic systems’. Techn. Bulletin No. 1468 ,USDA Agricultural Research Service, Washington, D.C.

    Google Scholar 

  • Eggert, K.G., 1987. ‘Upstream calculation of characteristics for kinematic wave routing’. J. Hydr. Engrg ,ASCE, 113(6): 743–752.

    Article  Google Scholar 

  • Goldman, D., 1990. Discussion of ‘Kinematic wave routing and computational error’, J. Hydr. Engrg ,ASCE, 116(2), 280–282.

    Article  Google Scholar 

  • Goodrich, D.C., Woolhiser, D.A. and Keefer, T.O., 1991. ‘Kinematic routing using finite elements on a triangular irregular network’. Water Resour. Res. ,27(6): 995–1003.

    Article  Google Scholar 

  • Govindaraju, R.S. and Kawas M.L., 1991. Modeling the erosion process over steep slopes. approximate analytical solutions. J. Hydrol. ,127: 279–305.

    Article  Google Scholar 

  • Govindaraju, R.S. and Kawas M.L., 1992. ‘Characterization of the rill geometry over straight hillslopes through spatial scales. J. Hydrol. ,130: 339–365.

    Article  Google Scholar 

  • Govindaraju, R.S., Kawas M.L. and Tayfur, G., 1992. ‘A simplified model for two.dimensional overland flows’. Advances in Water Resources ,15, 133–141.

    Article  Google Scholar 

  • Hairsine, S.Y. and Parlange J.-Y., 1986. ‘Kinematic shock waves on curved surfaces and application to the cascade approximation’. J. Hydrol ,87: 187–200.

    Article  Google Scholar 

  • Hjelmfelt, AT, Piest, R.F. and Saxton, K.E., 1975. ‘Overland flow and groundwater flow from a steady rainfall of finite duration’. J. Geophys. Res. ,69(8), 1531–1540.

    Google Scholar 

  • Holden, A.P. and Stephenson, D., 1988. ‘Improved four point solution of the kinematic equations’. J. Hydr. Res. ,26(4): 413–423.

    Article  Google Scholar 

  • Hromadka II, T.V. and DeVries, J.J., 1988. ‘Kinematic wave routing and computational error’. J. Hydr. Engrg. ,ASCE, 114(2): 207–217.

    Article  Google Scholar 

  • Kawas, M.L. and Govindaraju, R.S., 1992. ‘Hydrodynamic averaging of overland flow and soil erosion over rilled hillslopes.’ Erosion, Debris Flow and Environment in Mountain Regions, Proc. of the Chengdu Symposium, IAHS Publ. 209: 101–111.

    Google Scholar 

  • Kibler, D.F. and Woolhiser, D.A., 1970. ‘The kinematic cascade as a hydrologic model’. Colorado State Univ., Hydrol.Pap. no. 39 ,Fort Collins, Colorado.

    Google Scholar 

  • Kibler, D.F. and Woolhiser, D.A., 1972. ‘Mathematical properties of the kinematic cascade’. J. Hydrol. ,15: 131–147.

    Article  Google Scholar 

  • Kluwick, A., 1977.‘Kinematische Wellen’, (Kinematic waves, in German). Acta Mechanica ,26: 15–46.

    Article  Google Scholar 

  • Koussis, A., 1976. ‘An approximative dynamic flood routing method’. Proc. Int. Symp. on Unsteady Flow in Open Channels ,Paper LI, Newcastle-upon-Tyne, England.

    Google Scholar 

  • Koussis, A.D., Saenz, M.A. and Tollis, I.G., 1983. ‘Pollution routing in streams’.J. Hydr. Engrg., ASCE, 109(12): 1636–1651.

    Article  Google Scholar 

  • Lane, L.J. and Shirley, E.D., 1982. ‘Modeling erosion in overland flow’. In: Estimating Erosion and Sediment Rangelands ,Proc. Workshop, Tucson, Arizona, March 7– USDA, Agr. Res. Serv., Agricultural Reviews and Manuals, ARM-W-26: 120–128.

    Google Scholar 

  • Lighthill, M.J. and Whitham, G.B., 1955. ‘On kinematic waves, I. Flood movement in long rivers’. Proc. Roy. Soc. ,A229: 281–316.

    Google Scholar 

  • Merkel, W.H., 1990. ’Discussion of ‘Kinematic wave routing and computational error’. J. Hydr. Engrg., ASCE, 116(2): 282–284.

    Article  Google Scholar 

  • Morris, E.M. and Woolhiser, D.A., 1980. ‘Unsteady one-dimensional flow over a plane: Partial equilibrium and recession hydrographs’. Water Resour. Res. ,16(2): 355–360.

    Article  Google Scholar 

  • Ponce, V.M., 1986. ‘Diffusion wave modeling of catchment dynamics’. J. Hydr. Engrg. ,ASCE, 112(8): 716–727.

    Article  Google Scholar 

  • Ponce, V.M., 1990. ‘Generalized diffusion wave equation with inertial effects’. Water Resour. Res. ,26(5): 1099–1101.

    Article  Google Scholar 

  • Ponce, V.M., 1991. ‘The kinematic wave controversy’. J. Hydr. Engrg. ,ASCE 117(4): 511–525.

    Article  Google Scholar 

  • Ponce, V.M. and Windingland, D., 1985. ‘Kinematic shock: sensitivity analysis’. J. Hydr. Engrg., ASCE, 111(4): 600–611.

    Article  Google Scholar 

  • Ponce, V.M. and Yevjevich, V., 1978. ‘Muskingum-Cunge method with variable parameters’. Techn. Note, Hydr. Div., Proc. ASCE ,104(12): 1663–1667.

    Google Scholar 

  • Rose, C.W., Williams, J.R., Sanders, G.C. and Barry, D.A., 1983. ‘A mathematical model of soil erosion and depositional processes: II. Application to data from an arid-zone catchment’. Soil Sci. Soc of America J. ,47(5), 996–1000.

    Article  Google Scholar 

  • Rovey, E.W., Woolhiser, D.A. and Smith, R.E., 1977. ‘A distributed kinematic model of upland watersheds’. Colorado State Univ., Hydrol. Pap. No. 93 ,Fort Collins, Colorado.

    Google Scholar 

  • Saquib, M.N. and Kawas, M.L. ‘Three dimensional modeling of watershed hydrology’. Water Resources Planning and Management (Saving a threatend resource - in search of solutions), Proc. of the Water Resources sessions at Water Forum ’92, 391–396.

    Google Scholar 

  • Schmid, B.H., 1990a. ‘On kinematic cascades: derivation of a generalized shock formation criterion’. J. Hydr. Res. ,28(3): 331–340.

    Article  Google Scholar 

  • Schmid, B.H., 1990b. ‘The matched diffusivity technique applied to kinematic cascades’. I. Model description and validation. J. Hydrol. ,121: 345–361.

    Google Scholar 

  • Schmid, B.H., 1990c. ‘The matched diffusivity technique applied to kinematic cascades’. II. Analysis of model performance. J. Hydrol. ,121: 363–337.

    Google Scholar 

  • Schmid, B.H., 1990d. ‘A study on kinematic cascades’. Wiener Mitteilungen Wasser-Abwasser- Gewässer ,vol. 90, Vienna, Austria.

    Google Scholar 

  • Schmid, B.H. and Gutknecht, D., 1988. ‘Ein Ingenieurverfahren zur Inflltrationsberechnung mit Taschenrechner’, (An engineering method of computing infiltration rates by means of a pocket calculator, in German with summary in English). Österr. Wasserwirtschaft ,40 (7/8): 175–183.

    Google Scholar 

  • Shirley, E.D. and Lane, L.J., 1978. ‘A sediment yield equation from an erosion simulation model’. In: Hydrology and Water Resources in Arizona and the Southwest ,8, 90–96, Univ. of Arizona, Tucson, Arizona.

    Google Scholar 

  • Singh, V.P., 1975. Hybrid formulation of kinematic wave models of watershed runoff. J. Hydrol. ,27: 33–50.

    Article  Google Scholar 

  • Singh, V.P., 1976a. ‘A distributed converging overland flow model’. 3. Application to natural watersheds. Water Resour. Res. ,12(5): 902–908.

    Article  Google Scholar 

  • Singh, V.P., 1976b. ‘A note on the step error of some finite-difference schemes used to solve kinematic wave equations’. J. Hydrol. ,30: 247–255.

    Article  Google Scholar 

  • Singh, V.P. and Prasad, S.N., 1982. ’Explicit solutions to kinematic equations for erosion on an infiltrating plane. In: Singh, V.P. (Ed.), Modeling Components of Hydrologic Cycle ,Water Resour. Publ., Littleton, Colorado, 515–538.

    Google Scholar 

  • Smith, RE, 1983. ‘Approximate soil water movement by kinematic characteristics’. J. Am. Soil Sci. Soc., 47:3–8.

    Article  Google Scholar 

  • Smith, R.E. and Parlange, J.-Y., 1978. ‘A parameter-efficient hydrologic infiltration model’. Water Resour. Res. ,14(3): 533–538.

    Article  Google Scholar 

  • Smith, R.E. and Woolhiser, D.A., 1971. ‘Mathematical simulation of infiltrating watersheds’. Colorado State Univ., Hydrol. Pap. No. 47 ,Fort Collins, Colorado.

    Google Scholar 

  • Smoller, J., 1983. Shock waves and reaction-diffusion equations. Springer-Verlag, New York-Heidelberg-Berlin.

    Book  Google Scholar 

  • Stephenson, D. and Meadows, M.E., 1986. ‘Kinematic hydrology and modelling’. Developments in Water Sci. ,26, Elsevier Sci. Publ., Amsterdam.

    Google Scholar 

  • Unkrich, C.L. and Woolhiser, D.A., 1990. Discussion of ‘Kinematic wave routing and computational error’. J. Hydr. Engrg. ,ASCE, 116(2): 284–286.

    Article  Google Scholar 

  • Viera, J.H.D., 1983. ‘Conditions governing the use of approximations for the Saint-Venant equations for shallow water surface flow’. J. Hydrol. ,60, 43–58.

    Article  Google Scholar 

  • Weinmann, P.E. and Laurenson, E.M., 1979. ‘Approximate flood routing methods’: a review. J. Hydr. Div. ,Proc. ASCE, 105(12): 1521–1536.

    Google Scholar 

  • Whitham, G.B., 1974. Linear and nonlinear waves. Wiley-Interscience.

    Google Scholar 

  • Wooding, R.A., 1965a. A hydraulic model for the catchment-stream problem‘. I, Kinematic wave theory. J. Hydrol. ,3: 254–267.

    Google Scholar 

  • Wooding, R.A., 1965b. A hydraulic model for the catchment-stream problem‘. II, Numerical solutions. J. Hydrol. ,3: 268–282.

    Google Scholar 

  • Woolhiser, D.A. and Goodrich, D.C., 1990. Discussion of ‘Kinemativ wave routing and computational error’. J. Hydr. Engrg. ,ASCE, 116(2): 286–288.

    Article  Google Scholar 

  • Woolhiser, D.A. and Liggett, J.A., 1967. ‘Unsteady one-dimensional flow over a plane - the rising hydrograph’. Water Resour. Res. ,3(3): 753–771.

    Article  Google Scholar 

  • Yomota, A. and Islam, M.N., 1992. ‘Kinematic analysis of flood runoff for a small - scale upland field’. J. Hydrol. ,137: 311–326.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Schmid, B.H., Summer, W. (1996). Computational Aspects in Kinematic Modelling. In: Singh, V.P., Kumar, B. (eds) Proceedings of the International Conference on Hydrology and Water Resources, New Delhi, India, December 1993. Water Science and Technology Library, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0389-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0389-3_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4174-4

  • Online ISBN: 978-94-011-0389-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics