Skip to main content

Use of positron emission tomography for the diagnosis and evaluation of ischemic heart disease

  • Chapter
  • 41 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 171))

Summary

Positron emission tomography differs from conventional single photon techniques on the basis of basic physical principles, which translate into better image and contrast resolution, and avoidance of soft tissue attenuation. Consequently, PET is more accurate than SPECT. This is of value in myocardial perfusion imaging, particularly in obese patients, when questions are raised about physiological significance of mild coronary lesions, in complex patients, and in those with prior myocardial infarction. The accuracy of PET imaging for the diagnosis of coronary artery disease is about 90%. The physical principles of PET also favor a fully quantitative approach, which may be used to exactly measure myocardial blood flow. The other major indication of cardiac PET is the identification of viable myocardium, for which the most established technique is FDG imaging. This method is sensitive for the detection of viable myocardium but some variability in its specificity has been reported. New techniques which have been used to examine myocardial viability include evaluation of C-11 acetate clearance, quantitation of rubidium washout, and the perfusible tissue index. The examination of cardiac receptor status with PET may become clinically useful in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bacharach SL. The physics of positron emission tomography. In: Bergmann SR, Sobel BE, editor. Positron emission tomography of the heart. Mount Kisco: Futura Publishing Company, 1992:13–44.

    Google Scholar 

  2. Koeppe RA, Hutchins GD. Instrumentation for positron emission tomography: tomographs and data processing and display systems. Sem Nucl Med 1992;22:162–181.

    Article  CAS  Google Scholar 

  3. Eisner RI, Tamas MJ, Cloninger K, et al. Normal SPECT thallium-201 bulls-eye display: Gender differences. J Nucl Med1988;29:1901–1909.

    PubMed  CAS  Google Scholar 

  4. Gould KL. Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. 1. Physiologic basis and experimental validation. Am Cardiol 1978;41:267–278.

    Article  CAS  Google Scholar 

  5. Gould KL, Goldstein RA, Mullani NA, et al. Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VIII. Clinical feasibility of positron cardiac imaging without a cyclotron using generator-produced rubidium-82. Am Coll Cardiol 1986;7:775–789.

    Article  CAS  Google Scholar 

  6. Hutchins GD, Beanlands RS, Muzik O, Schwaiger M. Quantitative vs semi-quantitative PET myocardial blood flow: influence of regional ammonia kinetics [abstract]. Circulation 1992;86(4 suppl):1710.

    Google Scholar 

  7. Laubenbacher C, Rothley J, Sitomer J, et al. An automated analysis program for the evaluation of cardiac PET studies: initial results in the detection and localization of coronary artery disease using nitrogen-13-ammonia. J Nucl Med 1993;34:968–978.

    PubMed  CAS  Google Scholar 

  8. Bergmann SR, Herrero P, Markham J, et al. Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labelled water and positron emission tomography. J Am Coll of Cardiol 1989;14:639–652.

    Article  CAS  Google Scholar 

  9. Go RT, Marwick TH, Maclntyre WJ, et al. A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J Nucl Med 1990;31:1899–1905.

    PubMed  CAS  Google Scholar 

  10. Schwaiger M. Myocardial perfusion imaging with PET. Journal of Nuclear Medicine. 1994;35:693–698.

    PubMed  CAS  Google Scholar 

  11. Tamaki N, Yonekura Y, Senda M, et al. Value and limitation of stress thallium-201 single photon emission computed tomography: comparison with nitrogen-13 ammonia positron tomography. J Nucl Med 1988;29:1181–1189.

    PubMed  CAS  Google Scholar 

  12. Stewart RE, Schwaiger M, Molina E, et al. Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. Am J Cardiol 1991;67:130–310.

    Article  Google Scholar 

  13. Marwick TH, Lafont A, Go RT, Underwood DA, Saha GB, Maclntyre WJ. Identification of recurrent ischemia after coronary artery bypass surgery: a comparison of positron emission tomography and single photon emission computed tomography. Int J Cardiol1992;35:33–41.

    Article  PubMed  CAS  Google Scholar 

  14. Marwick TH, Go RT, Maclntyre WJ, Saha GB, Underwood DA. Myocardial perfusion imaging with positron emission tomography and single photon emission computed tomography: frequency and causes of disparate results. Eur Heart J 1991;12:1064–1069.

    PubMed  CAS  Google Scholar 

  15. Araujo LI, Lammertsma AA, Rhodes CG, et al. Noninvasive quantification of regional myocardial blood flow in coronary artery disease with oxygen-15-labeled carbon dioxide inhalation and positron emission tomography. Circulation 1991;83:875–885.

    Article  PubMed  CAS  Google Scholar 

  16. Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici P. Relation between myocardial blood flow and the severity of coronary artery stenosis. N Engl J Med 1991;330:P1782–1788.

    Article  Google Scholar 

  17. Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Schelbert HR, Kuhl DE. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol 1990; 15:1032–1042.

    Article  PubMed  CAS  Google Scholar 

  18. Czernin J, Muller P, Chan S, et al. Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation1993;88:62–69.

    Article  PubMed  CAS  Google Scholar 

  19. Muzik O, Beanlands RS, Hutchins GD, Mangner TJ, Nguyen N, Schwaiger M. Validation of nitrogen-13-ammonia tracer kinetic model for quantification of myocardial blood flow using PET. J Nucl Med 1993;34:83–91.

    PubMed  CAS  Google Scholar 

  20. Uren NG, Marraccini P, Gistri R, De Silva R, Camici PG. Altered coronary vasodilator reserve and metabolism in myocardium subtended by normal arteries in patients with coronary artery disease. J Am Coll Cardiol 1993;22:650–658.

    Article  PubMed  CAS  Google Scholar 

  21. Gould KL, Kirkeeide RL, Buchi M. Coronary flow reserve as a physiologic measure of stenosis severity. J Am Coll Cardiol 1990; 15:459–474.

    Article  PubMed  CAS  Google Scholar 

  22. Dayanikli F, Grambow D, Muzik O, Mosca L, Rubenfire M, Schwaiger M. Early detection of abnormal coronary flow reserve in asymptomatic men at high risk for coronary artery disease using positron emission tomography. Circulation 1994;90:808–817.

    Article  PubMed  CAS  Google Scholar 

  23. Brunken R, Tillisch J, Schwaiger M, et al. Regional perfusion, glucose metabolism, and wall motion in patients with chronic electrocardiographic Q wave infarctions: evidence for persistence of viable tissue in some infarct regions by positron emission tomography. Circulation 1986;73:951–963.

    Article  PubMed  CAS  Google Scholar 

  24. Kloner RA, Przyklenk K, Patel B. Altered myocardial states: The stunned and hibernating myocardium. Am J Med1986;86:14–22.

    Article  Google Scholar 

  25. Rahimtoola SH. The hibernating myocardium. Am Heart J 1989;117:211–221.

    Article  PubMed  CAS  Google Scholar 

  26. Phelps ME, Hoffman EJ, Selin C, et al. Investigation of [F-18] 2-fluoro-2-deoxyglucose for the measure of myocardial glucose metabolism. J Nucl Med 1978;19:1311–1319.

    PubMed  CAS  Google Scholar 

  27. Camici P, Ferrannini E, Opie LH. Myocardial metabolism in ischemic heart disease: Basic principles and application to imaging by positron emission tomography. Prog Cardiovasc Dis 1989;32:217–238.

    Article  PubMed  CAS  Google Scholar 

  28. Knuuti MJ, Nuutila P, Ruotsalainen U, et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med 1992;33:1255–1262.

    PubMed  CAS  Google Scholar 

  29. Vanoverschelde JL, Wijns W, Depre C, et al. Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation 1993;87:1513–1523.

    Article  PubMed  CAS  Google Scholar 

  30. Maes A, Flameng W, Nuyts J, et al. Histological alterations in chronically hypoperfused myocardium. Correlation with PET findings. Circulation 1994;90:735–745.

    Article  PubMed  CAS  Google Scholar 

  31. Marwick TH, Maclntyre WJ, Lafont A, Nemec JJ, Salcedo EE. Metabolic responses of hibernating and infarcted myocardium to revascularization. A follow-up study of regional perfusion, function, and metabolism. Circulation 1992;85:1347–1353.

    Article  PubMed  CAS  Google Scholar 

  32. Gropler RJ, Geltman EM, Sampathkumaran K, et al. Functional recovery after coronary revascularization for chronic coronary artery disease is dependent on maintenance of oxidative metabolism. J Am Coll Cardiol 1992;20:569–577.

    Article  PubMed  CAS  Google Scholar 

  33. Knuuti MJ, Nuutila P, Ruotsalainen U, et al. The value of quantitative analysis of glucose utilization in detection of myocardial viability by PET. J Nucl Med 1993;34:2068–2075.

    PubMed  CAS  Google Scholar 

  34. Alderman EL, Fisher LD, Litwin P, et al. Results of coronary artery surgery in patients with poor left ventricular function (CASS). Circulation 1983;68:785–795.

    Article  PubMed  CAS  Google Scholar 

  35. Dreyfus G, Duboc D, Blasco A, et al. Coronary surgery can be an alternative to heart transplantation in selected patients with end-stage ischemic heart disease. Eur Cardiothorac Surg 1993;7:482–487, discussion 488.

    Article  CAS  Google Scholar 

  36. Louie HW, Laks H, Milgalter E, et al. Ischemic cardiomyopathy. Criteria for coronary revascularization and cardiac transplantation. Circulation 1991;84(5 suppl):290–295.

    Google Scholar 

  37. Gropler RJ, Geltman EM, Sampathkumaran K, et al. Comparison of carbon-11-acetate with fluorine-18-fluorodeoxyglucose for delineating viable myocardium by positron emission tomography. J Am Coll Cardiol 1993;22:1587–1597.

    Article  PubMed  CAS  Google Scholar 

  38. Gould L, Yoshida K, Hess M, et al. Myocardial metabolism of fluorodeoxyglucose compared to cell membrane integrity for the potassium analog rubidium-82 for assessing infarct size in man by PET. J Nucl Med 1991;32:1–9.

    PubMed  CAS  Google Scholar 

  39. De Silva R, Yamamoto Y, Rhodes CG, et al. Preoperative prediction of the outcome of coronary revascularization using positron emission tomography. Circulation 1992;86:1738–1742.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marwick, T.H. (1995). Use of positron emission tomography for the diagnosis and evaluation of ischemic heart disease. In: Van Der Wall, E.E., Marwick, T.H., Reiber, J.H.C. (eds) Advances in Imaging Techniques in Ischemic Heart Disease. Developments in Cardiovascular Medicine, vol 171. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0365-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0365-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4163-8

  • Online ISBN: 978-94-011-0365-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics