Skip to main content

Summary

In this paper an overview is given of the current state-of-the-art in quantitative coronary arteriography (QCA) and of anticipated future developments. The conventional QCA approaches with automated contour detection techniques based on Minimal Cost contour detection Algorithms (MCA) have been well established and validated. The functional significance of an obstruction can be assessed by measuring the perfusion of the myocardium at different flow conditions, the Myocardial Flow Reserve (MFR). The development of the Gradient Field Transform approach for the quantitation of complex lesions represents a major step forward in QCA. Future developments are directed towards digital-only analyses, standardization of the file formats (DICOM), the incorporation of computer networks and the analyses of the coronary tree for optimizing the image acquisition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown BG, Bolson E, Frimer M, Dodge HT. Quantitative coronary arteriography: estimation of dimensions, hemodynamic resistance, and atheroma mass of coronary artery lesions using the arteriogram and digital computation. Circulation 1977; 55:329–337.

    Article  PubMed  CAS  Google Scholar 

  2. Reiber JHC, Booman F, Tan HS, et al. A cardiac image analysis system. Objective quantitative processing of angiocardiograms. Comput Cardiol 1978:239–242.

    Google Scholar 

  3. Reiber JHC, Serruys PW, editors. Advances in quantitative coronary arteriography. Dordrecht: Kluwer Academic Publishers, 1993.

    Google Scholar 

  4. Jukema JW, Bruschke AVG, van Boven AJ, et al. Effects of lipid lowering by pravastatin on progression and regression of coronary artery disease in symptomatic men with normal to moderately elevated serum cholesterol levels. The “Regression Growth Evaluation Statin Study” (REGRESS). Circulation. In press.

    Google Scholar 

  5. Bruschke AVG, Jukema JW, van Boven AJ, Bal ET, Reiber JHC, Zwinderman AH. Angiographic endpoints in progression trials. Submitted.

    Google Scholar 

  6. Lespérance, Hudon G, Lemarbre L, Laurier J, Waters D. A comparison of quantitative measurements and visual assessment of coronary stenoses. Circulation 1990; 82(4 Suppl): III-654.

    Google Scholar 

  7. Reiber JHC, von Land CD, Koning G, et al. Comparison of accuracy and precision of quantitative coronary arterial analysis between cinefilm and digital systems. In: Reiber JHC, Serruys PW, editors. Progress in quantitative coronary arteriography. Dordrecht: Kluwer Academic Publishers, 1994:67–85.

    Chapter  Google Scholar 

  8. Zwet PMJ van der, Land CD von, Loois G, Gerbrands JJ, Reiber JHC. An on-line system for the quantitative analysis of coronary arterial segments. Comput Cardiol 1990:157–160.

    Google Scholar 

  9. Reiber JHC, Koning G, von Land CD, van der Zwet PMJ. Why and how should QCA systems be validated? In: Reiber JHC, Serruys PW, editors. Progress in quantitative coronary arteriography. Dordrecht: Kluwer Academic Publishers, 1994:33–48.

    Google Scholar 

  10. Reiber JHC, van der Zwet PMJ, Koning G, et al. Accuracy and precision of quantitative digital coronary arteriography: observer-, short-and medium-term variabilities. Cathet Cardiovasc Diagn 1993; 28:187–198.

    Article  PubMed  CAS  Google Scholar 

  11. Vogel R, LeFree M, Bates E, et al. Application of digital techniques to selective coronary arteriography: use of myocardial contrast appearance time to measure coronary flow reserve. Am Heart J 1984; 107:153–164.

    Article  PubMed  CAS  Google Scholar 

  12. Cusma JT, Toggart EJ, Folts JD, et al. Digital substraction angiographic imaging of coronary flow reserve. Circulation 1987; 75:461–472.

    Article  PubMed  CAS  Google Scholar 

  13. Reiber JHC, Koning G., van der Zwet PMJ, et al. Assessment of myocardial flow reserve with the DCI. MedicaMundi 1993; 38:81–88.

    Google Scholar 

  14. Schalij MJ, Geldof MJA, van der Zwet PMJ, et al. On-line assessment of myocardial flow reserve. In: Reiber JHC and Serruys PW, editors. Progress in quantitative coronary arteriography. Dordrecht: Kluwer Academic Publishers, 1994:173–189.

    Chapter  Google Scholar 

  15. Bosch JG, van Burken G, Schukking SS, Wolff R, van de Goor AJ, Reiber JHC. Real-time frame-to-frame automatic contour detection on echocardiograms. Comput Cardiol. In press.

    Google Scholar 

  16. van der Geest RJ, Jansen E, Buller VGM, Reiber JHC. Automated detection of left ventricular epi-and endocardial contours in short-axis MR images. Comput Cardiol. In press.

    Google Scholar 

  17. van der Zwet PMJ, Reiber JHC. A new approach for the quantification of complex lesion morphology: the gradient field transform; basic principles and validation results. J Am Coll Cardiol 1994; 24:216–224.

    Article  PubMed  Google Scholar 

  18. Kalbfleisch SJ, McGillem MJ, Simon SB, DeBoe SF, Pinto IMF, Mancini GBJ. Automated quantitation of indexes of coronary lesion complexity. Comparison between patients with stable and unstable angina. Circulation 1990; 82:439–447.

    Article  PubMed  CAS  Google Scholar 

  19. Cardiac angiography without cine film erecting a Tower of Babel in the cardiac catheterization laboratory. American College of Cardiology Cardiac Catheterization Committee. J Am Coll Cardiol 1994; 24834-837.

    Google Scholar 

  20. Toussaint CAJ. Development of an objective image quality measure for X-ray angiograms. [M.Sc. Thesis,] Delft University of Technology, 1993 [in Dutch].

    Google Scholar 

  21. Dumay ACM. Image reconstruction from biplane angiographic projections. [Dissertation]. Delft: University of Technology, 1992.

    Google Scholar 

  22. Dumay ACM, Gerbrands JJ, Reiber JHC. Automated extraction, labelling and analysis of the coronary vasculature from arteriograms. Int J Card Imaging 1994; 10:205–215.

    Article  PubMed  CAS  Google Scholar 

  23. Finet G, Lienard J. Optimizing coronary angiographie views. Int J Card Imaging 1995; 11(Suppl 1):53–54.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Reiber, J.H.C. et al. (1995). Evolution of quantitative coronary arteriography. In: Van Der Wall, E.E., Marwick, T.H., Reiber, J.H.C. (eds) Advances in Imaging Techniques in Ischemic Heart Disease. Developments in Cardiovascular Medicine, vol 171. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0365-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0365-7_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4163-8

  • Online ISBN: 978-94-011-0365-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics