Skip to main content

Selecting the optimum genetic background for transgenic varieties, with examples from Brassica

  • Chapter
The Methodology of Plant Genetic Manipulation: Criteria for Decision Making

Part of the book series: Developments in Plant Breeding ((DIPB,volume 3))

  • 459 Accesses

Summary

The performance of transgenic varieties depends not only upon the stable and correctly-regulated expression of specific transgenes but also upon the agronomic potential of the background genotype. Ideally, transgenes should be introduced into agronomically-superior cultivars and transgenic varieties will become out-classed if their agronomic properties are not continually improved. It will often prove desirable to use conventional breeding techniques, as opposed to new cycles of transformation, to carry out this process of varietal improvement.

Continuing advances in marker-assisted selection have made possible the selection and manipulation of an entire genetic background. This means that transgenes can be transferred to new and often ’untransformable’ varieties with relative ease. To carry out this process efficiently requires the correct choice of male and female parents, the use of appropriate marker-systems and the concentration of selection on the most appropriate generations.

Efficient, phenotypically-neutral marker-systems have revolutionised the identification and manipulation of quantitative trait loci (QTLs). The loci which modify the expression of transgenes are a form of QTL. Desirable alleles at modifier QTLs can be transferred to new varieties along with the transgenes themselves, using marker- assisted breeding.

The strategies for marker-assisted selection are becoming ever more sophisticated. A range of complementary marker systems allows the selection of desirable genotypes. In addition, the meiotic reassortment and recombination of chromosomes which produces new genotypes is becoming better understood. The most efficient plant breeding methods and the most powerful genetics will make optimal use of both markers and meiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Austin, S., M.A. Baer &J.P. Helgeson, 1985. Transfer of resistance to potato leaf roll virus from Solanum brevidens into Solanum tuberosum by somatic fusion. Plant Sci. 39: 75–82.

    Article  Google Scholar 

  • Botstein, D., R.L. White, M. Skolnick &R.W. Davis, 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314–331.

    PubMed  CAS  Google Scholar 

  • Chen, J.L. &M.D. Beversdorf, 1990. A comparison of traditional and haploid-derived breeding populations of oilseed rape (Brassica napus) for fatty acid composition of the seed oil. Euphytica 51: 59–65.

    Article  CAS  Google Scholar 

  • Chyi, Y.-S., M.E. Hoenecke &J.L. Sernyk, 1992. A genetic linkage map of restriction fragment length polymorphism loci for Brassica rapa (syn.campestris). Genome 35: 746–757.

    Article  CAS  Google Scholar 

  • Dale, P.J., J.A. Irwin &J.A. Scheffler, 1993. The experimental and commercial release of transgenic crop plants. Plant Breeding 111: 1–22.

    Article  CAS  Google Scholar 

  • Dale, P.J. &H.C. McPartlan, 1992. Field performance of transgenic potato plants compared with controls regenerated from tuber discs and shoot cuttings. Theor. Appl. Genet. 84: 585–591.

    Article  Google Scholar 

  • Devos, K. &M. Gale, 1993. The genetic maps of wheat and their potential in plant breeding. Outlook on Agriculture 22: 93–99.

    Google Scholar 

  • Does, M.P., B.M.M. Dekker, M.J.A. DeGroot &R. Offringa, 1991. A quick method to estimate the T-DNA copy number in transgenic plants at an early stage after transformation, using inverse PCR. Plant Mol. Biol. 17: 151–153.

    Article  PubMed  CAS  Google Scholar 

  • Draper, J., R. Scott, P. Armitage &R. Waiden, 1988. Plant Genetic Transformation and Gene Expression. Blackwell, London.

    Google Scholar 

  • Edwards, K., C. Johnstone &C. Thompson, 1991. A rapid and simple method for the preparation of plant genomic DNA for PCR analysis. Nucl. Acids Res. 19: 1349.

    Article  PubMed  CAS  Google Scholar 

  • Helentjaris, T., 1987. A genetic linkage map for maize based on RFLPs. Trends Genet. 3: 217–221.

    Article  CAS  Google Scholar 

  • Henderson, C.A.P. &K.P. Pauls, 1992. The use of haploidy to develop plants that express several recessive traits using light-seeded canola( Brassica napus) as an example. Theor. Apl. Genet. 83: 476–479.

    Google Scholar 

  • Horsch, R.B., R.T. Fraley, S.G. Rogers, P.R. Sanders &A. Lloyd, 1984. Inheritance of functional foreign genes in plants. Science 223: 496–498.

    Article  PubMed  CAS  Google Scholar 

  • Knutzon, D.S., G.A. Thompson, S.E. Radke, W.B. Johnson, V.C. Knauf &J.R. Kridl, 1992. Modification ofBrassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proc. Natl. Acad. Sci. USA 89: 2624–2628.

    Article  PubMed  CAS  Google Scholar 

  • Konieczny, A. &F.M. Ausubel, 1993. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR- based markers. Plant J. 4: 403–410.

    Article  PubMed  CAS  Google Scholar 

  • Kurata, N., G. Moore, Y. Nagamura, T. Foote, M. Yano, Y. Minobe &M. Gale, 1994. Conservation of genome structure between rice and wheat. Bio/Technology 12: 276–278.

    Article  CAS  Google Scholar 

  • Lagercrantz, U. &D.J. Lydiate, 1995. RFLP mapping inBrassica nigra indicates differing recombination rates in male and female meioses. Genome 38: 255–264.

    Article  PubMed  CAS  Google Scholar 

  • Lichter, R., E. De Groot, D. Fiebig, R. Schweiger &A. Gland, 1988. Glucosinolates determined by HPLC in seeds of microspore- derived homozygous lines of rapeseed(Brassica napus L.). Plant Breeding 100: 209–221.

    Article  CAS  Google Scholar 

  • Lydiate, D., A. Sharpe, U. Lagercrantz &I. Parkin, 1993. Mapping theBrassica genome. Outlook on Agriculture 22: 85–92.

    Google Scholar 

  • Mithen, R.F. &C. Herron, 1992. Transfer of disease resistance to oilseed rape from wildBrassica species. Proceedings of the 8th International Rapeseed Congress, pp. 244–249. Saskatoon, Canada.

    Google Scholar 

  • Napoli, C., C. Lemieux &R. Jorgenson, 1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genesin trans. Plant Cell 2: 279– 289.

    PubMed  CAS  Google Scholar 

  • Paterson, A.H., E.S. Lander, J.D. Hewitt, S. Peterson, S.E. Lincoln &S.D. Tanksley, 1988. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335: 721–726.

    Article  PubMed  CAS  Google Scholar 

  • Paterson, A.H., S.D. Tanksley &M.E. Sorrells, 1991. DNA markers in plant improvement. Advances in Agronomy 46: 39–90.

    Article  CAS  Google Scholar 

  • Peach, C. &J. Velten, 1991. Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol. Biol. 17: 49–60.

    Article  PubMed  CAS  Google Scholar 

  • Potrykus, I., 1990. Gene transfer to plants: assessment and perspectives. Physiol Plantarum 79: 115–134.

    Article  Google Scholar 

  • Rafalski, J.A. &S.V. Tingey, 1993. Genetic diagnostics in plant breeding: RAPDs, microsatellites and machines. Trends Genet. 9: 275–280.

    Article  PubMed  CAS  Google Scholar 

  • Rhodes, C.A., D.A. Pierce, I.J. Mettler, D. Mascarenhas &J.J. Detmer, 1988. Genetically transformed maize plants from protoplasts. Science 240: 204–207.

    Article  PubMed  CAS  Google Scholar 

  • Sears, E.R., 1981. Transfer of alien genetic material to wheat. In: L.T. Evans &W.J. Peacock (Eds) Wheat science - Today and Tomorrow, pp. 75–89. Cambridge University Press.

    Google Scholar 

  • Shields, C.R., T.J. Orton &C.W. Stuber, 1983. An outline of general resource needs and procedures for the electrophoretic separation of active enzymes from plant tissues. In: S.D. Tanksley &T.J. Orton (Eds) Isozymes in Plant Breeding and Genetics: Part A, pp. 443–468. Elsevier, Amsterdam.

    Google Scholar 

  • Shimamoto, K., R. Terada, T. Izawa &H. Fujimoto, 1989. Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 338:274–276.

    Article  CAS  Google Scholar 

  • Slocum, M.K., S.S. Figdore, W.C. Kennard, J.Y. Suzuki &T.C. Osborn, 1990. Linkage arrangement of restriction fragment length polymorphism loci inBrassica oleracea. Theor. Appl. Genet. 80: 57–64.

    Article  CAS  Google Scholar 

  • Smith, P.G., 1944. Embryo culture of a tomato species hybrid. Proc. Am. Soc. Hortic. Sci. 44: 413–416.

    Google Scholar 

  • Song, K. &T.C. Osborn, 1992. Polyphyletic origins ofBrassica napus: new evidence based on organelle and nuclear RFLP analyses. Genome 35: 992–1001.

    Article  Google Scholar 

  • Stam, P., 1980. The distribution of the fraction of the genome identical by descent in finite random mating populations. Genet. Res. Camb. 35: 131–155.

    Article  Google Scholar 

  • Stuber, C.W., 1992. Biochemical and molecular markers in plant breeding. In: J. Janick (Ed.) Plant Breeding Reviews, Vol. 9, pp. 37–61. John Wiley &Sons, New York.

    Google Scholar 

  • Tanksley, S.D., 1983. Molecular markers in plant breeding. Plant Mol. Biol. Rep. 1: 3–8.

    Article  CAS  Google Scholar 

  • Tanksley, S.D. &T.J. Orton, 1983. Isozymes in Plant Breeding and Genetics: Part A. Elsevier, Amsterdam.

    Google Scholar 

  • Tanksley, S.D., M.W. Ganal, J.P. Prince, M.C. de Vincente, M.W. Bonierbale, P. Broun, T.M. Fulton, J.J. Giovanonni, S. Grandillo, G.B. Martin, R. Messegeur, J.C. Miller, L. Miller, A.H. Paterson, O. Pineda, M.S. Roder, R.A. Wing, W. Wu &N.D. Young, 1992. High density molecular linkage maps of the tomato and potato genomes. Genetics 132: 1141–1160.

    PubMed  CAS  Google Scholar 

  • U, N., 1935. Genomic analysis inBrassica with species reference to the experimental formation ofB. napus and peculiar mode of fertilisation. Jap. J. Bot. 7: 389–452.

    Google Scholar 

  • Vasil, V., A.M. Castillo, M.E. Fromm &I.K. Vasil, 1992. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology 10: 667–674.

    Article  CAS  Google Scholar 

  • De Vicente, M.C. &S.D. Tanksley, 1991. Genome-wide reduction in recombination of backcross progeny derived from male versus female gametes in an interspecific cross of tomato. Theor. Appl. Genet. 83: 173–178.

    Article  Google Scholar 

  • Wendel, J.F., C.W. Stuber, M.D. Edwards &M.M. Goodman (1986). Duplicated chromosome segments in maize(Zea mays L.): further evidence from hexokinase isozymes. Theor. Appl. Genet. 72: 178–185.

    Article  CAS  Google Scholar 

  • White, R.L., J.M. Lalouel, Y. Nakamura, H. Doniskeller, P. Green, D.W. Bowden, C.G.P. Mathew, D.F. Easton, E.B. Robson, N.E. Morton, J.F. Gusella, J.L. Haines, A.E. Retief, K.K. Kidd, J.C. Murray, G.M. Lathrop &H.M. Cann, 1990. The CEPH consortium primary linkage map of human chromosome-10. Genomics 6: 393–412.

    Article  PubMed  CAS  Google Scholar 

  • Williams, J.G.K., A.R. Kubelik, K.L. Livak, J.A. Rafalski &S.V. Tingey, 1991. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 18: 6531 - 6535.

    Article  Google Scholar 

  • Zehr, B.E., J.W. Dudley, J. Chojecki, M.A. Saghai Maroof &R.P. Mowers, 1992. Use of RFLP markers to search for alleles in a maize population for improvement of an elite hybrid. Theor. Appl. Genet. 83:903–911.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lydiate, D., Dale, P., Lagercrantz, U., Parkin, I., Howell, P. (1995). Selecting the optimum genetic background for transgenic varieties, with examples from Brassica . In: Cassells, A.C., Jones, P.W. (eds) The Methodology of Plant Genetic Manipulation: Criteria for Decision Making. Developments in Plant Breeding, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0357-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0357-2_43

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4159-1

  • Online ISBN: 978-94-011-0357-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics