Skip to main content

Summary

Tomato spotted wilt virus (TSWV) causes significant economic losses in the commercial culture of tomato (Lycopersicon esculentum Mill.). Culture practices and introgression of natural sources of resistance to TSWV have only been marginally effective in controlling the TSWV disease. Recently however, high levels of protection against TSWV have been obtained by transforming tobacco with a chimaeric gene cassette comprising the TSWV nucle- oprotein gene. This report demonstrates the successful application of this newly-created TSWV resistance gene in cultivated tomato. Transformation of an inbred tomato line with the TSWV nucleoprotein gene cassette resulted in high levels of resistance to TSWV that were maintained in hybrids derived from the parental tomato line. Therefore, transformant lines carrying the synthetic TSWV resistance gene make suitable progenitors for TSWV resistance to be incorporated into the breeding programmes of tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ausubel, F.M., R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith & K. Struhl (Eds), 1987. Current Protocols in Molec-ular Biology. Green Publishing Associates, Inc. and John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Bevan, M., 1984. BinaryAgrobacterium vectors for plant transfor-mation. Nucl. Acids Res. 12: 8711–8721.

    Article  PubMed  CAS  Google Scholar 

  • Boiteux, L.S. & L. de B. Giordano, 1993. Genetic basis of resis-tance against two Tospovirus species in tomato (Lycopersicon esculentum). Euphytica 71: 151–154.

    Article  Google Scholar 

  • Cho, J.J., R.F.L. Mau, T.L. German, R.W. Hartmann, L.S. Yudin, D. Gonsalves & R. Provvidenti, 1989. A multidisciplinary approach to management of tomato spotted wilt virus in Hawaii. Plant Dis. 73: 375–383.

    Article  Google Scholar 

  • de Avila, A.C.P., P. de Haan, R. Kormelink, R. de Oliveira Resende, R.W. Goldbach & D. Peters, 1993. Classification of tospoviruses based on phylogeny of nucleoprotein gene sequences. J. Gen. Virol. 74: 153–159.

    Article  PubMed  Google Scholar 

  • De Haan, P., L. Wagemakers, D. Peters & R. Goldbach, 1990. The S RNA of tomato spotted wilt virus has an ambisense character. J. Gen. Virol. 71: 1001–1007.

    Article  PubMed  Google Scholar 

  • de Haan, P., R. Kormelink, R. de Oliveira Resende, F. van Poelwijk, D. Peters & R. Goldbach, 1991. Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. J. Gen. Virol. 71: 2207–2216.

    Article  Google Scholar 

  • de Haan, P., J.J.L. Gielen, M. Prins, I.G. Wijkamp, A. van Schepen, D. Peters, M.Q.J.M. van Grinsven & R. Goldbach, 1992. Char-acterization of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco plants. Bio/Technol. 10: 1133–1137.

    Article  Google Scholar 

  • de Laat, A.M.M., W. Göhde & M.J.D.C. Vogelzang, 1987. Deter-mination of ploidy of single plants and plant populations by flow cytometry. Plant Breeding 99: 303–307.

    Article  Google Scholar 

  • Ditta, G., S. Stanfield, D. Corbin & D.R. Helinski, 1980. Broad host range DNA cloning system for Gram-negative bacteria: construc-tion of a gene bank of Rhizobium meliloti. Proc. Natl. Acad. Sci. USA 80: 7347–7351.

    Article  Google Scholar 

  • Doyle, J.J. & J.L. Doyle, 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15 (published by Life Technologies, Inc.).

    Google Scholar 

  • Fillatti, J.J., J. Kiser, R. Rose & L. Comai, 1987. Efficient trans-fer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. Bio/Technol. 5: 726–730.

    Article  CAS  Google Scholar 

  • Finlay, K.W., 1952. Inheritance of spotted wilt resistance in the tomato. I. Identification of strains of the virus by the resistance of susceptibility of tomato species. Australian J. Sci. Res. 5: 303– 314.

    CAS  Google Scholar 

  • Finlay, K.W., 1953. Inheritance of spotted wilt resistance in the tomato. II. Five genes controlling spotted wilt resistance in four tomato types. Australian J. Biol. Sci. 6: 153–163.

    CAS  Google Scholar 

  • Gallie, D.R., D.E. Sleat, J.W. Watts, P.C. Turner & T.M.A. Wil-son, 1987. The 5′-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcriptsin vitro and in vivo. Nucl. Acids Res. 15: 3257–3273.

    Article  PubMed  CAS  Google Scholar 

  • German, T.L., D.E. Ullman & J.W. Moyer, 1992. Tospoviruses: diagnosis, molecular biology, phylogeny, and vector relation-ships. Annu. Rev. Phytopathol. 30: 315–348.

    Article  PubMed  CAS  Google Scholar 

  • Gielen, J.J.L., P. de Haan, A.J. Kool, D. Peters, M.Q.J.M. van Grinsven & R.W. Goldbach, 1991. Engineered resistance to toma-to spotted wilt virus, a negative-strand RNA virus. Bio/Technol. 9: 1363–1367.

    Article  CAS  Google Scholar 

  • Goldbach, R.W. & D. Peters, 1994. Possible causes of the emergence of tospoviruses. Sem. Virol. 5: in press.

    Google Scholar 

  • Hull, R. & J.W. Davies, 1992. Approaches to nonconventional con-trol of plant virus diseases. Crit. Rev. Plant Sci. 11: 17–33.

    Article  CAS  Google Scholar 

  • Kormelink, R., E.W. Kitajima, P. de Haan, D. Zuidema, D. Peters & R. Goldbach, 1991. The nonstructural protein (NSs) encoded by the ambisense S RNA segment of tomato spotted wilt virus is associated with fibrous structures in infected plant cells. Virology 181:459–468.

    Article  PubMed  CAS  Google Scholar 

  • Kormelink, R., P. de Haan, C.Meurs, D. Peters & R. Goldbach, 1992. The nucleotide sequence of the MRNA segment of tomato spotted wilt virus, a bunyavirus with two ambisense RNA segments. J. Gen. Virol. 73: 2795–2804.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, N.K.K., D.E. Ullman & J.J. Cho, 1993. Evaluationof Lycop-ersicon germ plasm for tomato spotted wilt tospovirus resistance by mechanical and thrips transmission. Plant Dis. 77: 938–941.

    Article  Google Scholar 

  • Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Law, M.D. & J.W. Moyer, 1990. A tomato spotted wilt-like virus with a serologically distinct N protein. J. Gen. Virol. 71: 933–938.

    Article  CAS  Google Scholar 

  • MacKenzie, D.J. & P.J. Ellis, 1992. Resistance to tomato spotted wilt virus infection in transgenic tobacco expressing the viral nucleocapsid gene. Mol. Plant-Microbe Interact. 5: 34–40.

    Article  PubMed  CAS  Google Scholar 

  • Murashige,. T. & F. Skoog, 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  • Ooms, G., P.J.J. Hooykaas,G. Molenaar & R.A. Schilperoort, 1981. Crown gall tumors of different morphology, induced byAgrobac-terium tumefaciens carrying mutated octopine Ti plasmids; anal-ysis of T-DNA functions. Gene 14: 33–50.

    Article  PubMed  CAS  Google Scholar 

  • Pang, S.Z., P. Nagpala, M. Wang, J.L. Slightom & D. Gonsal.ves, 1992. Resistance to heterologous isolates of tomato spotted wilt virus in transgenic tobacco expressing its nucleocapsid protein gene. Phytopathol. 82: 1223–1229.

    Article  CAS  Google Scholar 

  • Paterson, R.G., S.J. Scott & R.C. Gergerich, 1989. Resistance in two Lycopersicon species to an Arkansas isolate of tomato spotted wilt virus. Euphytica 43: 173–178.

    Article  Google Scholar 

  • Reddy, D.V.R., A.S. Ratna, M.R. Sudarshana, F. Poul & I.K. Kumar, 1992. Serological relationships and purification of bud necrosis virus, a tospovirus occurring in peanut (Arachis hypogaea L.) in India. Ann. Appl. Biol. 120: 279–286.

    Article  Google Scholar 

  • Resende, R. de Oliveira, A.C. de Avila, R.W. Goldbach & D. Peters, 1991a. Generation of envelope and defective interfering RNA mutants of tomato spotted wilt virus by mechanical passage. J. Gen. Virol. 72: 2375–2383.

    Article  Google Scholar 

  • Resende, R. de Oliveira, A.C. de Avila, R.W. Goldbach & D. Peters, 1991b. Detection of tomato spotted wilt virus using polyclonal antisera in double antibody sandwich (DAS) ELISA and cocktail ELISA. J. Phytopathol. 132: 46–56.

    Article  CAS  Google Scholar 

  • Sanford, J.C. & S.A. Johnston, 1985. The concept of parasite-derived resistance-deriving resistance genes from the parasite’s own genome. J. Theor. Biol. 113: 395–405.

    Article  Google Scholar 

  • Scholthof, K.B.G., H.B. Scholthof & A.O. Jackson, 1993. Control of plant virus diseases by pathogen-derived resistance in transgenic plants. Plant Physiol. 102: 7–12.

    PubMed  CAS  Google Scholar 

  • Shahin, E.A., K. Sukhapinda, R.B. Simpson & R. Spivey, 1986. Transformation of cultivated tomato by a binary vector in Agrobacterium rhizogenes: transgenic plants with normal phe-notypes harbor binary vector T-DNA, but no Ri-plasmid T-DNA. Theor. Appl. Genet. 72: 770–777.

    Article  CAS  Google Scholar 

  • Smith, P.G., 1944. Reaction ofLycopersicon spp. to spotted wilt. Phytopathol. 34: 504–505.

    Google Scholar 

  • Stevens, M.R., S.J. Scott & R.C. Gergerich, 1992. Inheritance of a gene for resistance to tomato spotted wilt virus (TSWV) from Lycopersicon peruvianum Mill. Euphytica 59: 9–17.

    Google Scholar 

  • Wahl, G.M., M. Stern & G.R. Stark, 1979. Efficient transfer of large DNA fragments from agarose gels to diazogenzyloxymethyl-paper and rapid hybridization by using dextran sulphate. Proc. Natl. Acad. Sci. USA 76: 3683–3688.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, T.M.A., 1993. Strategies to protect crop plants against virus-es: pathogen-derived resistance blossoms. Proc. Natl. Acad. Sci. USA 90: 3134–3141.

    Article  PubMed  CAS  Google Scholar 

  • Yeh, S.D., Y.C. Lin, Y.H. Cheng, C.L. Jih, M.J. Chen & C.C. Chen, 1992. Identification of tomato spotted wilt-like virus on watermelon in Taiwan. Plant Dis. 76: 835–840.

    Article  Google Scholar 

  • Yoder, J.I., J. Palys, K. Alpert & M. Lassner, 1988. Ac transposition in transgenic tomato plants. Mol. Gen. Genet. 213: 291–296.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ultzen, T. et al. (1995). Resistance to tomato spotted wilt virus in transgenic tomato hybrids. In: Cassells, A.C., Jones, P.W. (eds) The Methodology of Plant Genetic Manipulation: Criteria for Decision Making. Developments in Plant Breeding, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0357-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0357-2_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4159-1

  • Online ISBN: 978-94-011-0357-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics