Skip to main content

Chiral Sulfonated Phosphines in Enantioselective Catalysis

  • Chapter
Aqueous Organometallic Chemistry and Catalysis

Part of the book series: NATO ASI Series ((ASHT,volume 5))

Abstract

The imines ArC(Me)=NCHPh (Ar=Ph, 2-MeO-C6H4, 3-MeO-C6H4, 4-MeO-C6H4) are hydrogenated to the corresponding amines with extremely high enantioselectivities up to 96 % under very mild conditions, using rhodium complexes associated with sulfonated (-)-(2S,4S)-2,4-bis(diphenylphosphino)pentane (S,S)-(BDPP). These complexes are also effective as catalyst for asymmetric hydrogenolysis of sodium cis-epoxy-succinate to sodium hydroxysuccinate in aqueous-organic two-phase solvent system or in aqueous solution. A catalytic cycle involving rhodaoxetane intermediate and a heterolytic hydrogen splitting, is suggested. Catalytic hydrogenolysis of sodium salt of trans-phenylglycidic acid proceeds via a regioselective kinetic resolution to give sodium salt of α-hydroxycarboxylic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kuntz, E.G. (1987) Homogeneous catalysis in water, Chemtech. 570–575.

    Google Scholar 

  2. Joó, F., Tóth, Z. (1980) Catalysis by water-soluble phosphine complexes of transition metal ions in aqueous and two-phase media, J. Mol. Catal. 8, 369–383.

    Article  Google Scholar 

  3. Sinou, D. (1987) Water-soluble phosphines. Synthesis and use in catalysis. Bull. Soc. Chim. Fr. 480–486.

    Google Scholar 

  4. Ahrland, S., Chatt, J., Davies N.R., and Williams, A.A. (1958) The relative affinities of co-ordinating atoms for silver ion. Part II. Nitrogen, phosphorus, and arsenic, J. Chem. Soc. (London), 276–288.

    Google Scholar 

  5. Borowski, A.F., Cole-Hamilton D.J., and Wilkinson, G. (1978) Water-soluble transition metal phosphine complexes and their use in two-phase catalytic reactions of olefins, Nouv. J. Chim., 2, 137–144.

    CAS  Google Scholar 

  6. Amrani, Y., Lecomte, L., Sinou, D., Bakos, J., Toth, I., and Heil, B. (1989) Chiral sulfonated phosphines. Syntheses and use as a ligand in asymmetric hydrogenation using an aqueous-organic two-phase solvent system, Organometallics 8, 542–547.

    Article  Google Scholar 

  7. Petit, L. D. and Irving, H.M.N.H. (1964) Ligand containing elements of group V. Part I. J. Chem. Soc. (London), 5336–5343.

    Google Scholar 

  8. Russel M.J.H. (1988) Water soluble rhodium catalysts Platinum Metal Rev., 32, 179–186.

    Google Scholar 

  9. Murrer, B.A. (1982) D.E. 3.135.127A1 (Johnson Matthey Corp.).

    Google Scholar 

  10. Schwarzenbach, G. and Schellenberg, M. (1965) Die Komplexchemie des Methylguecksilber-Kations,Helv. Chim. Acta, 48, 28–46.

    Article  CAS  Google Scholar 

  11. Harrison, K.N., Hoye, P.A.T., Orpen, A.G., Pringle, P.G. and Smith M.B. (1989) Water soluble, zerovalent,platinum-, and nickel-P(CH2OH)3 complexes: catalysts for addition of PH3 to CH2O, 1096–1097.

    Google Scholar 

  12. Smith, R.T., Ungar, R.K., and Baird, M.C. (1982) Rhodium complexes of water-soluble phosphine(2-diphenylphosphinoethyl)trimethylammonium nitrate: theirchemistry in polar solvents, and their use as catalysts in aqueous/organic two-phase systems and absorbed on a cation exchange resin, Trans. Met. Chem., 7, 288–289.

    Article  CAS  Google Scholar 

  13. Toth, I., and Hanson, B.E. (1990) Novel chiral water soluble phosphines I. Preparation and characterization of amine functionalized DIOP, chiraphos, and BDPP derivatives and quaternization of their rhodium complexes, Tetrahedron: Asymmety 1, 895–912.

    Article  CAS  Google Scholar 

  14. Toth, I. and Hanson, B.E. and Davis, M. (1990) Novel chiral water soluble phosphines II. Application in catalytic asymmetric hydrogenation, Tetrahedron: Asymmetry 1, 913–930.

    Article  CAS  Google Scholar 

  15. Okano, T.,. Uchida, I., Nakagaki, T., Konishi, H., and Kiji, J. (1989) Carbonylation of benzyl chloride catalyzed by water-soluble palladium phosphine complex in two-phase system, J. Mol. Catal. 54, 65–71.

    Article  CAS  Google Scholar 

  16. Kuntz, E. (1977) Addition of hydrogen cyanide to unsaturated organic compounds with et least one ethylenic double bond, Ger. Offen 2.700.904 (Rhone-Poulenc Industries).

    Google Scholar 

  17. Mignani, G., Morel, D. and Colleuille, Y. (1985) A novel method for the isoprenylation of β-dicarbonyl compounds, Tetrahedron Letters, 26, 6337–6340.

    Article  CAS  Google Scholar 

  18. Safi, M., and Sinou, D. (1991) Palladium(0)-catalyzed substitution of allylic substrates in two-phase aqueous-organic medium, Tetrahedron Letters 32, 2025–2028.

    Article  CAS  Google Scholar 

  19. Alario, F., Amrani, Y., Colleuille, Y., Dang, T.P., Jenck, J., Morel, D., and Sinou, D. (1986) Asymmetric hydrogenationin aqueous-organic two-phase systems using rhodium complexes of sulfonated phosphines, J. Chem. Soc., Chem. Commun. 202–203.

    Google Scholar 

  20. Lecomte, L., Sinou, D., Bakos, J., Toth, I. and Heil, B. (1989) Chiral sulphonated phosphines II. Influence of water on the enantioselectivity in the hydrogenation of dehydro-aminoacids, J. Organomet. Chem. 370, 277–284.

    Article  CAS  Google Scholar 

  21. Bakos, J., Karaivanov, R., Laghmari, M., and Sinou, D. (in press) Chiral sulfonated phosphine. IX. Role of the water in the hydrogenation of dehydroaminoacids, Organometallics.

    Google Scholar 

  22. Wan, K., Davis, M.E. (1993) Asymmetric hydrogenation in water by a rhodium complex of sulfonated 2,2‘-bis(diphenylphosphino)-l,l’-binaphthyl (binap) J. Chem. Soc., Chem. Commun. 1262–1264.

    Google Scholar 

  23. Wan, K., Davis, M.E. (1993) Rhutenium (II)-sulfonated BINAP: a novel water-soluble asymmetric hydrogenation catalyst, Tetrahedron: Asymmetry 12, 2461–2468.

    Article  Google Scholar 

  24. Bakos, J. Heil, B., Orosz, Á, Laghmari, M., Lhoste, P. and Sinou, D. (1991) Rhodium(I)-Sulfonated-bdpp Catalysed Asymmetric Hydrogenation of Imines in Aqueous-Organic Two-Phase Solvent Systems, J. Chem. Soc., Chem. Commun., 1684–1685.

    Google Scholar 

  25. Lecomte, L., Triolet, J. and Sinou, D. (1987) High performance liquid chromatographic separation of sulphonated phosphines, J. Chromatogr. 408, 416–419.

    Article  CAS  Google Scholar 

  26. Kuntz, E.G. (1976) Aldehydes by hydroformylation of olefins Br. Pat. 1540242 (Rhone-Poulenc Industries).

    Google Scholar 

  27. Vastag, S., Bakos, J., Tõrös, S., Takach, N.E., King, R.B., Heil, B. and Markó, L. (1984) Rhodium complexes as homogeneous catalysts. 14. Asymmetric hydrogenation of Schiff base of acetophenone - effect of phosphine and catalyst structure on enantioselectivity, J. Mol. Catal. 22, 283–287.

    Article  CAS  Google Scholar 

  28. Bakos, J., Toth, I., Heil, B. and Markó, L. (1985) A facile method for the preparation of 2,4-bis(diphenylphosphino)pentane (BDPP) enantiomers and their application in asymmetric hydrogenation, J. Organomet. Chem. 279, 23–29.

    Article  CAS  Google Scholar 

  29. Bakos, J., Toth, I., Heil, B., Szalontai, G, Párkányi, 1., Fülöp, V. (1989) Catalytic and structural studies of Rh(I) complexes of (2S,4S)-2,4- bis(diphenylphosphino)pentane. Asymmetric hydrogenation of acetophenonebenzylimine and acetophenone, J. Organomet. Chem. 370, 263–276.

    Article  CAS  Google Scholar 

  30. Longley, C.J., Goodwin, T.J. and Wilkinson, G. (1986) Hydrogenation of imines by rhodium-phosphine complexes, Polyhedron 5, 1625–1628.

    Article  CAS  Google Scholar 

  31. Becalski, A.G., Cullen, W.R., Fryzuk, M.D., James, B.R., Kang, G.-J. and Rettig, S.J. (1991) Catalytic asymmetric hydrogenation of imines. Use of rhodium(I)/phosphine complexes and characterisation of rhodium(I)/imine complexes, Inorg. Chem. 30, 5002–5008.

    Article  CAS  Google Scholar 

  32. Kang, G.-J., Cullen, W.R., Fryzuk, M.D., James, B.R. and Kutney, J.P. (1988) Catalytic asymmetric hydrogenation of imines. Use of rhodium(I)/phosphine complexes and characterisation of rhodium(I)/imine complexes, J. Chem. Soc., Chem. Commun. 5008–5009.

    Google Scholar 

  33. Spindler,F., Pugin, B. and Blaser, H.-U., (1990) Angew. Chem., Int. Ed. Eng. 29, 558–559.

    Article  Google Scholar 

  34. Herrmann, W.A., Kohlpaintner, C.W. (1993) Water-soluble ligands, metal complexes, and catalysts: synergism of homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed. Engl. 32, 1524–1544.

    Article  Google Scholar 

  35. Lensink, C., de Vries, J.G. (1992) Improving enantioselectivity by using a mono-sulfonated diphosphine as ligand for homogeneous imine hydrogenation, Tetrahedron: Asymmetry 3, 235–238.

    Article  CAS  Google Scholar 

  36. Chan A.S.C. and Coleman J.P. (1991) Homogeneous asymmetric hydrogenolysis of sodium epoxysuccinate: the first example of asymmetric hydrogenolysis of an epoxide, J. Chem. Soc., Chem. Commun. 535–536.

    Google Scholar 

  37. This work has recently been reported. Bakos, J. Orosz, A., Sinou D. (1990) Rhodium(I) sulphonated phosphine complexes as catalysts for asymmetric hydrogenolysis of epoxides, Abstract of Papers, ISHC-7,Lyon, , P–43.

    Google Scholar 

  38. Dale, J.A.,Dull, D.L. and Mosher, H.S. (1969) J. Org. Chem. 34, 3543.

    Article  Google Scholar 

  39. Chan, A.S.C., Halpern, J. (1980) Interception and characterization of a hydridoalkylrhodium intermediate in a homogeneous catalytic hydrogenation reaction, J. Am. Chem. Soc. 102, 838–840.

    Article  CAS  Google Scholar 

  40. Brown, J.M. and Chaloner, P.A. (1980) Structural characterisation of a transient intermediate in rhodium-catalysed asymmetric homogeneous hydrogenation, J. Chem. Soc., Chem. Commun. 344–346.

    Google Scholar 

  41. Calhorda, M.J., Galvao, A.M., Ünaleroglu, c., Zlota, A.A., Frolow, F., and Milstein, D. (1993) Rhodaoxetane: synthesis, structure, and theoretical evaluation, Organometallics 12, 3316–3325.

    Article  CAS  Google Scholar 

  42. Herrmann, W.A., Kulpe, J.A., Konkol, W., Bahrmann, H. (1990) Wasserlösliche Metallkomplexe und Katalysatoren II. Tris(natrium-m-sulfonatophenyl)phosphan (TPPTS) und katalyserelevanter Rhodium-Komplexe,J. Organomet. Chem. 389, 85–101.

    Article  CAS  Google Scholar 

  43. Martin, V.S., Woodard, S.S., Katsuki, T., Yamada, Y., Ikeda, M., and Sharpless, B. (1981) Kinetic resolution of racemic alcohols by enantioselective epoxidation. A route to substances of absolute enantiomeric purity, J. Am. Chem. Soc. 103, 6237–6240.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bakos, J. (1995). Chiral Sulfonated Phosphines in Enantioselective Catalysis. In: Horváth, I.T., Joó, F. (eds) Aqueous Organometallic Chemistry and Catalysis. NATO ASI Series, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0355-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0355-8_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4158-4

  • Online ISBN: 978-94-011-0355-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics