Skip to main content

Organometallic Catalysis in Water and in a Two-Phase System

  • Chapter
Aqueous Organometallic Chemistry and Catalysis

Part of the book series: NATO ASI Series ((ASHT,volume 5))

Abstract

Amino acids precursors are reduced in a two-phase system ethyl acetate-water with e.e. up to 90 % in the presence of a rhodium complex associated with chiral sulfonated diphosphines. Performing the reaction in deuterium oxide allows the regiospecific introduction of a deuterium atom at the carbon a to the acetamido and the ester group.

Palladium(0)-catalyzed allylic substitution of acetates or carbonates occur in a two-phases system nitrile-water using tppts as the ligand; recycling of the catalyst is possible whatever the nucleophile used (carbo or heteronucleophile). The application of this methodology to uracil and 2-thiouracil derivatives afford the regiospecific allylated product at N-1 for the uracil and at sulfur for the thiouracil series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Joó, F. and Tóth, Z. (1980) Catalysis by water-soluble phosphine complexes of transition metal ions in aqueous and two-phase media, J. Mol. Catal. 8, 369–383.

    Article  Google Scholar 

  2. Sinou, D. (1987) Phosphines hydrosolubles. Synthèses et applications en catalyse, Bull. Soc. Chim. Fr. 480–486.

    Google Scholar 

  3. Kuntz, E. G. (1987) Homogeneous catalysis in water, Chemtech 17, 570–575.

    CAS  Google Scholar 

  4. Southern, T. G. (1989) Biphasic and phase transfer catalysis, Polyhedron 8, 407–413.

    Article  CAS  Google Scholar 

  5. Barton, M. and Atwood, J. D. (1991) Aqueous soluble organometallic complexes, J. Coord. Chem. 24, 43–67.

    Article  CAS  Google Scholar 

  6. Kalck, P. and Monteil, F. (1992) Use of water-soluble ligands in homogeneous catalysis, Adv. Organomet. Chem. 34, 219–284.

    Article  CAS  Google Scholar 

  7. Herrmann, W. A. and Kohlpaintner, C. W. (1993) Water-soluble ligands, metal complexes, and catalysts: synergism of homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed. Engl. 32, 1524–1544.

    Article  Google Scholar 

  8. Halpern, J. (1985) Asymmetric catalytic hydrogenation: mechanism and origin of enantioselection, in J. D. Morrison (ed), Asymmetric Synthesis, Academic Press, Inc., London, 5, 41–69.

    Google Scholar 

  9. Koenig, K. E. (1985) The applicability of asymmetric homogeneous catalytic hydrogenation, in J. D. Morrison (ed), Asymmetric Synthesis, Academic Press, Inc., London, 5, 71–101.

    Google Scholar 

  10. Brunner, H. and Zettlmeier, W. (1993) Handbook of Enantioselective Catalysis, VCH, Weinheim.

    Google Scholar 

  11. Amrani, Y., Lecomte, L., Sinou, D., Bakos, J., Toth, I. and Heil, B. (1989) Chiral sulfonated phosphines. Syntheses and use as ligands in asymmetric hydrogenation using an aqueous-organic two-phase system, Organometallics 8, 542–547.

    Article  Google Scholar 

  12. Reichart, C. (1988) Solvents and Solvents Effects in Organic Chemistry, VCH, Weinheim.

    Google Scholar 

  13. Lecomte, L., Sinou, D., Bakos, J., Toth, I. and Heil, B. (1989) Chiral sulfonated phosphines. II. Influence of water on the enantioselectivity in the reduction of dehydroaminoacids,J. Organomet. Chem. 370, 277–284.

    Article  CAS  Google Scholar 

  14. Bakos, J., Karaivanov, R., Laghmari, M. and Sinou, D. (1994) Chiral sulfonated phosphines. IX. Role of the water in the hydrogenation of dehydroaminoacids, Organometallics, under press.

    Google Scholar 

  15. Sinou, D., Safi, M., Claver, C. and Masdeu, A. (1991) Chiral sulfonated phosphines. Part VII. Catalytic transfer-hydrogenation of unsaturated substrates with formates in the presence of water soluble complexes of rhodium, J. Mol. Cat. 68, L-9–L12.

    CAS  Google Scholar 

  16. Trost, B. M. and Verhoeven, T. R. (1982) Organopalladium compounds in organic synthesis and in catalysis, in G. Wilkinson, A. F. G. Stone and E. W. Abel (eds), Comprehensive Organometallic Chemistry, Pergamon Press, New York, 8, 799–938.

    Chapter  Google Scholar 

  17. Tsuji, J. (1986) New general synthetic methods involving π-allylpalladium complexes as intermediates and neutral reactions conditions, Tetrahedron 42, 4361–4401.

    Article  CAS  Google Scholar 

  18. Heck, R. F. (1985) Palladium Reagents in Organic Synthesis, Academic Press, London.

    Google Scholar 

  19. Goldeski, S. A. (1991) Nucleophiles with allyl-metal complexes, in B. M. Trost (ed), Comprehensive Organic Synthesis, Pergamon Press, Oxford, 4, 585–661.

    Google Scholar 

  20. Frost, C. G., Howarth, J. and Williams, J. M. (1992) Selectivity in palladium catalyzed allylic substitution, Tetrahedron: Asymmetry 3, 1089–1122;

    Article  CAS  Google Scholar 

  21. Safi, M. and Sinou, D. (1991) Palladium(0)-catalyzed substitution of allylic substrates in a two-phase aqueous-organic medium, Tetrahedron Lett. 32, 2025–2028.

    Article  CAS  Google Scholar 

  22. Blart, E., Genet, J. P., Safi, M., Savignac, M. and Sinou, D. (1994) Palladium(0)-catalyzed substitution of allylic substrates in an aqueous-organic medium, Tetrahedron, 50, 505–514.

    Article  CAS  Google Scholar 

  23. Genet, J. P., Blart, E., Savignac, M., Lemeune, S., Lemaire-Audoire, S., Paris, J. M. and Bernard, J. M. (1993) Practical palladium-mediated deprotective method of allyloxycarbonyl in aqueous media, Tetrahedron 50, 497–505.

    Article  Google Scholar 

  24. Moreno-Mañas, M., Pleixats, R. and Villarroya, M. (1993) Palladium-catalyzed allylation of pyrimidine-2,4-diones (uracils) and of 6 membered heterocyclic ambident sulfur nucleophiles, Tetrahedron 49, 1457–1464.

    Article  Google Scholar 

  25. Sigismondi, S., Sinou, D., Perez, M., Moreno-Mañas, M., Pleixats, R. and Villarroya (1994) Palladium(0)-catalyzed allylation of uracils and 2-thiouracils. Drastic effect of an aqueous reaction medium on the regioselectivity, Tetrahedron Lett. in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sinou, D. (1995). Organometallic Catalysis in Water and in a Two-Phase System. In: Horváth, I.T., Joó, F. (eds) Aqueous Organometallic Chemistry and Catalysis. NATO ASI Series, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0355-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0355-8_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4158-4

  • Online ISBN: 978-94-011-0355-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics