Skip to main content

Design of microcosms to provide data reflecting field trials of GEMS

  • Chapter
Molecular Microbial Ecology Manual
  • 596 Accesses

Abstract

The issue of releasing genetically engineered micro-organisms into the environment is not one of either we do or we do not. It has already been done [19]. There have been more than 1,000 applications for testing genetically engineered organisms in the environment, most of which have or will occur in the USA [28].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atlas RM (1984) Diversity of microbial communities. Adv Microb Ecol 7: 1–47.

    Article  Google Scholar 

  2. Atlas RM, Bartha R (1993) Microbial Ecology: fundamentals and applications, 3rd ed., Benjamin/Cummings, Redwood City, CA.

    Google Scholar 

  3. Armstrong JL, Knudsen GR, Seidler RJ (1987) Microcosm method to assess survival of recombinant bacteria associated with plants and herbivorous insects. Curr Microbiol 15: 229–232.

    Article  Google Scholar 

  4. Armstrong JL (1989) Assessing the persistence of recombinant bacteria in microcosms. In: Fredrickson JK, Seidler RJ (eds) Evaluation of terrestrial microcosms for detection, fate, and survival analysis of genetically engineered micro-organisms and their recombinant genetic material, pp. 3–89/043. US EPA ERL Corvallis EPA 600.

    Google Scholar 

  5. Awong J, Bitton G, Chaudhry GR (1990) Microcosm for assessing survival of genetically engineered micro-organisms in aquatic environments. Appl Environ Micro 56: 977 983.

    Google Scholar 

  6. Bej AK, Mahbubani MH, Dicesare JL, Atlas RM (1991) Polymerase chain reaction-gene probe detection of micro-organisms by using filter-concentrated samples. Appl Environ Microbial 57: 3529–3534.

    CAS  Google Scholar 

  7. Bolton HJ, Fredrickson JK, Bentjen SA, Workman DJ, Shumei WL, Thomas JM (1991) Field calibrations of soil-core microcosms: fate of a genetically altered rhizobacterium. Microbial Ecol 21: 163–173.

    Article  Google Scholar 

  8. Bolton HJ, Fredrickson JK, Thomas JM, Li SW, Workman DJ, Bentjen SA. Smith JL (1991) Field calibration of soil-core microcosms: ecosystem structural and functional comparisons. Microbial Ecol 21: 175189.

    Google Scholar 

  9. Brettar I, Hofle M (1992) Influence of ecosystematic factors on survival of E. coli after large-scale release into lake water mesocosms. Appl Environ Microbial 58: 2201–2210.

    CAS  Google Scholar 

  10. Colwell RR (1988) Engineering marine micro-organisms for biodegradation and waste control in the sea. J Shellfish Res 7: 552 553.

    Google Scholar 

  11. Cripe CR, Pritchard PH (1992) Site-specific aquatic microcosms as test systems for fate and effects of micro-organisms. In: Levin MA, Seidler RJ, Rogul M (eds) Microhial Ecology: Principles, Methods, and Applications, pp. 467–493. McGraw Hill, New York.

    Google Scholar 

  12. Cripe CR, Pritchard PH (1992) Application of microcosms for assessing the risk of microhial hiotechnology products. In: Stern AM (ed) EPA 600r–92/066. US EPA Office of Res/Dev. Washington, DC.

    Google Scholar 

  13. Donegan K, Matyac C. Seidler RJ, Porteous A (1991) Evaluation of methods for sampling, recovery, and enumeration of bacteria applied to the phylloplane. Appl Environ Microbial 57: 51–56.

    CAS  Google Scholar 

  14. Federle TW, Livingston RJ, Wolfe LW, White DC (1986) A quantitative comparison of microbial community structure of estuarine sediments from microcosms and the field. Can J Microbial 32: 319–325.

    Article  Google Scholar 

  15. Fredrickson JK, Seidler RJ (1989) Evaluation of terrestrial microcosms for detection, fate, and survival analysis of genetically engineered micro-organisms and their recombinant genetic material. In: Fredrickson JK, Seidler RJ (eds), DOE Report, 600/3–89/043. EPA.

    Google Scholar 

  16. Fredrickson JK, Bolton HJ, Bentjen SA, McFadden KM, Ward LS, Van Voris P (1990) Evaluation of intact soil-core microcosms for determining potential impacts on nutrient dynamics by genetically engineered micro-organisms. Environ Toxic Chem. 9: 551–558.

    Article  CAS  Google Scholar 

  17. Gillett JW, Witt JM, Wyatt CJ (eds) (1978) Symposium of Terrestrial Microcosms and Environmental Chemistry. June 1977, Corvalis, Oregon, NSF/RA79–0026. National Science Foundation, Washington, DC.

    Google Scholar 

  18. Haas LM (1992) Improve epifluorescent microscopy for observing planktonic microorganisms. Ann Inst Oceanogr 58: 261–266.

    Google Scholar 

  19. Halvorson HO, Pramer D, Rogul M (1985) Engineered organisms in the environment: scientific issues. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  20. Hobbie JE, Daley RJ, Jasper S (1977) Use of Nucleopore filters for counting bacteria by fluorescence microscopy. Appl Environ Micro 33: 1225–1228.

    CAS  Google Scholar 

  21. Hood MA (1991) Comparison of four methods for measuring chitinase activity and the application of the 4-MUF assay in aquatic environments. J Micro Methods 13: 151–160.

    Article  CAS  Google Scholar 

  22. Jones RD, Hood MA (1980) The effects of organophosphorus pesticides on ammonium oxidation in estuarine sediments. Can J Microbial 26: 1296–1299.

    Article  CAS  Google Scholar 

  23. Kandel A. Nybroe O. Rasmussen OF (1992) Survival of 2,4-dichlorophenoxyacetic acid degrading Alcaligenes eulrophus AEO I 06 (pRO 101) in lake water microcosms. Microbial Ecol 24: 291–303.

    Article  CAS  Google Scholar 

  24. Kogure K, Simidu U, Taga N (1979) A tentative direct microscopic method for counting living marine bacteria. Can J Microbial 25: 415–420.

    Article  CAS  Google Scholar 

  25. Kroer N, Coffin RB (1992) Microbial trophic interactions in aquatic microcosms designed for testing genetically engineered micro-organisms: a field comparison. Microbial Ecol 23: 143–157.

    Article  Google Scholar 

  26. Levin MA, Seidler Rl, Borquin AW, Fowle JR lII, Barkay T (1987) EPA developing methods to assess environmental release. BioTechnol 5: 38–45.

    Article  Google Scholar 

  27. Martin K, Parsons LL, Murray RE (1988) Dynamics of soil denitrifier populations: relationships between enzyme activity. most probable number counts and actual N gas loss. Appl Environ Microbial 54: 2711–2716.

    CAS  Google Scholar 

  28. Mellon MJ (1993) The Gene Exchange. Union of Concerned Scientists. 1616 P St NJW Suite 310, Washington. DC 20036.

    Google Scholar 

  29. Nublein K, Maris D, Timmis K, Dwyer DF (1992) Expression and transfer of engineered catabolic pathways harbored by Pseudomonas spp introduced into activated sludge microcosms. Appl Environ Microbial 58: 3380 3386.

    Google Scholar 

  30. Nybroe O, Christoffersen K, Riemann B (1992) Survival of Bacillus lichieniformis in seawater model ecosystem. Appl Environ Microbial 58: 252–259.

    CAS  Google Scholar 

  31. Odum EP (1984) The mesocosm. BioScien 34: 558–562.

    Article  Google Scholar 

  32. O’Neill E, Hood MA, Cripe CR, Pritchard PH (1988). Field calibrations of aquatic microcosms. Abstracts of the annual meeting of the American Society for Microbiology, Washington, DC., pp. 297.

    Google Scholar 

  33. Parson TR, Maita Y. Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon. New York.

    Google Scholar 

  34. Paul JH. David A W (1989) Production of extracellular nucleic acids by genetically altered bacteria in aquatic environment microcosm. Appl Environ Microbial 55: 1865 1869.

    Google Scholar 

  35. Peck RL, Hem JL (1988) Rapid introduction of acetylene into large assay chambers for acetylene reduction experiments. Soil Sci Soc Am J 52: 1624–1625.

    Article  CAS  Google Scholar 

  36. Portier RJ (1985) Comparison of environmental effect and biotransformation of toxicants on laboratory microcosm and field microbial communities. In: Boyle TP (ed) Validation and Predictability of Laboratory Methods for Assessing the Fate and Effects of Contaminants in Aquatic Ecosystems. pp. 14–30. ASTM STP 865. Am Soc Testing Materials. Philadelphia. PA.

    Chapter  Google Scholar 

  37. Pritchard PH, Borquin AW (1984) The use of microcosms for evaluation of interactions between pollutants and micro-organism. In: Marshall KC (ed) Adv in Microbial Ecology. Vo1.7. pp. 133–215. Plenum. New York.

    Chapter  Google Scholar 

  38. Sands DC, Rovira AD (1970) Isolation of fluorescent pseudomonads with a selective medium. Appl Microbial 20: 513–514.

    CAS  Google Scholar 

  39. Scanferlato VS. Lacy GH, Cairns JJ (1990) Persistence of genetically engineered Erwinia cartovora in perturbed and unperturbed aquatic microcosm and effects on recovery of indigenous bacteria. Microbial Ecol 20: 11–20.

    Article  Google Scholar 

  40. Seidler RJ (1992) Evaluation of methods for detecting ecological effects from genetically engineered micro-organisms and microbial pest control agents in terrestrial systems. Biotech Adv 10: 149–178.

    Article  CAS  Google Scholar 

  41. Sobccky PA, Schell MA, Moran MA, Hodson RE, (1992) Adaption of model genetically engineered micro-organisms to lake water: growth rate enhancements and plasmid loss. Appl Environ Microbial 58: 3630–3637.

    Google Scholar 

  42. Standard Methods for the Examination of Water and Wastewater (1980). American Public Health Association. Washington, DC.

    Google Scholar 

  43. Taub FB (1992) Synthetic microcosms as test systems for survival and effects of genetically engineered micro-organisms. In: Levin MA, Seidler RJ, Rogul R (eds) Microbial Ecology: Principles, Methods and Applications, pp. 643–661. McGraw Hill, New York.

    Google Scholar 

  44. Van Voris P (1988) Standard guide for conducting a terrestrial soil-core microcosm test. Standard No. E-1197–87. In: Annual Book of ASTM Standards, Vol. 1104. American Society for Testing and Materials, Philadelphia, PA.

    Google Scholar 

  45. Wagner-Dobler I, Pipke R, Timmis KN, Dwyer OF (1992) Evaluation of aquatic sediment microcosms and their use in assessing possible effects of introduced microorganisms on ecosystem parameters. Appl Environ Microbial 58: 1249–1258.

    CAS  Google Scholar 

  46. Wimpenny JWT (1988) Models and Microcosms. In: Handbook of Laboratory Model Systems for Microbial Ecosystems, Vol I. pp 1–17. CRC Press, Inc, Boca Raton, FL.

    Google Scholar 

  47. Wright RT, Coffin RB (1984) Measuring microzooplankton grazing on planktonic marine bacteria by its impact on bacterial production. Microbial Ecol 10: 137–149.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hood, M.A., Seidler, R.J. (1995). Design of microcosms to provide data reflecting field trials of GEMS. In: Akkermans, A.D.L., Van Elsas, J.D., De Bruijn, F.J. (eds) Molecular Microbial Ecology Manual. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0351-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0351-0_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4156-0

  • Online ISBN: 978-94-011-0351-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics