Skip to main content

Heavy metal resistances in microbial ecosystems

  • Chapter

Abstract

The importance of heavy metal or oxyanion resistance markers for ecological studies was recently recognized. Such markers include the plasmid borne resistances to mercury [1–6], zinc [7–9], copper [10–14], nickel [15–17] and arsenical compounds [18–19]. These markers and others (resistance to cadmium, chromate, cobalt, thallium, lead, antimony, silver, tellurite [20,21]) are representative of the bacterial adaptation to environments that contain high levels of heavy metals. The most typical of these environments are sediments or soils from industrial or mining areas which may contain up to 10% heavy metals and still provide viable counts of heterotrophic bacteria [7].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bale MJ, Fry JC, Day MJ (1988) Transfer and occurrence of large mercury resistance plasmids in river epilithon. Appl Environ Microbiol 54: 972–978.

    PubMed  CAS  Google Scholar 

  2. Barkay T (1987) Adaptation of aquatic microbial communities to Hg2+ stress. Appl Environ Microbiol 53: 2725–2732.

    PubMed  CAS  Google Scholar 

  3. Barkay T, Fouts DL, Olson BH (1985) Preparation of a DNA gene probe for detection of mercury resistance genes in gram-negative bacterial communities. Appl Environ Microbiol 49: 686–692.

    PubMed  CAS  Google Scholar 

  4. Barkay T, Liebert C, Gillman M (1989) Environmental significance of the potential for mer (Tn2l)-mediated reduction of Hg2+ to Hg° in natural waters. Appl Environ Microbiol 55: 1196–1202.

    PubMed  CAS  Google Scholar 

  5. Barkay T, Liebert C, Gillman M (1989) Hybridization of DNA probes with whole- community genome for detection of genes that encode microbial responses to pollutants: mer genes and HG2+ resistance. Appl Environ Microbiol 55: 1574–1577.

    PubMed  CAS  Google Scholar 

  6. Barkay T, Turner RR, Vandenbroek A, Liebert C (1991) The relationships of HG (II) volatilization from a freshwater pond to the abundance of mer gene pool of the indigenous microbial community. Microb Ecol 21: 151–161.

    Article  CAS  Google Scholar 

  7. Bridges K, Kidson A, Lowbury EJL, Wilkins MD (1979) Gentamicin- and silverresistant Pseudomonas in a burns unit. Br Med J 1: 446–49.

    Article  PubMed  CAS  Google Scholar 

  8. Cooksey DA, Azad HR, Cha JS, Lim CK (1990) Copper resistance gene homologs in pathogenic and saprophytic bacterial species from tomato. Appl Environ Microbiol 56: 431–435.

    PubMed  CAS  Google Scholar 

  9. Desomer J, Dhaese P, Van Montagu M (1988) Conjugative transfer of cadmium resistance plasmids in Rhodococcus fascians strains. J Bacteriol 170: 2401–2405.

    PubMed  CAS  Google Scholar 

  10. Diels L, Van Roy S, Taghavi S, Doyen W, Leysen R, Mergeay M (1993) The use of Alcaligenes eutrophus immobilized in a tubular membrane reactor for heavy metal recuperation. Biohydrometallurgical Technologies, Edited by AE Torma, ML Apel, CL Brierly, The Minerals, Metals & Materials Society, pp. 133–144.

    Google Scholar 

  11. Diels, L, Mergeay M (1990) DNA probe-mediated detection of resistant bacteria from soils highly polluted by heavy metals. Appl Environ Microbiol 56: 1485–1491.

    PubMed  CAS  Google Scholar 

  12. Dressler C, Kues U, Nies DH, Friedrich B (1991) Determinants encoding resistance to several heavy metals in newly isolated copper-resistant bacteria. Appl Environ Microbiol 57: 3079–3085.

    PubMed  CAS  Google Scholar 

  13. Echols H, Garen A, Garen S, Torriani A (1961) Genetic control of repression of alkaline phosphatase in E. coli J Mol Biol 3: 425–438.

    Article  PubMed  CAS  Google Scholar 

  14. Gerhardt P, Murray RGE, Wood WA, Krieg NR (1993) Gene Mutation, in: Methods for general and molecular bacteriology. American Society of Microbiology, Washington DC.

    Google Scholar 

  15. Gerhardt P, Murray RGE, Wood WA, Krieg NR (1993) Plasmids. In: Methods for general and molecular bacteriology. American Society of Microbiology, Washington DC.

    Google Scholar 

  16. Hallas LE, Cooney JJ (1981) Effects of stannic chloride and organotin compounds on estuarine microorganisms. Dev Ind Microbiol 22: 529–535.

    CAS  Google Scholar 

  17. Hedges RW, Baumberg S (1973) Resistance to arsenic compounds conferred by a plasmid transmissible between strains of Escherichia coli. J Bacteriol 115: 459–460.

    PubMed  CAS  Google Scholar 

  18. Herrero M, de Lorenzo V, Timmis KH (1990) Transposon vectors containing non- antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 172: 6557–6567.

    PubMed  CAS  Google Scholar 

  19. Kado CI, Liu ST (1981) Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 145: 1365–1373.

    PubMed  CAS  Google Scholar 

  20. Keane PJ, Kerr A, New PB (1970) Crown gall of stone fruit. II. Identification and nomenclature of Agrobacterium isolates. Aust J biol Sci 23: 585-595.

    Google Scholar 

  21. Lebrun M, Loulergue J, Chaslus-Dancla E, Audurier A (1992) Plasmids in Listeria monocytogenes in relation to cadmium resistance. Appl Environ Microbiol 58: 3183 3186.

    Google Scholar 

  22. Mergeay M (1991) Towards an understanding of the genetics of bacterial metal resistance. Trends in Biotechnology 9: 17 24.

    Google Scholar 

  23. Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Van Gijsgem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162: 328–334.

    PubMed  CAS  Google Scholar 

  24. Powell B, Mergeay M, Christofi N (1989) Transfer of broad host range plasmids to sulphate-reducing bacteria. FEMS Lett. 59: 269 274.

    Google Scholar 

  25. Rouch D, Camakaris J, Lee BTO, Luke RKJ(1985)An inducible plasmid mediated copper resistance in Escherichia coli. J Gen Microbiol 131: 939–943.

    PubMed  CAS  Google Scholar 

  26. Sadouk A, Mergeay M (1993) Chromosome mapping in Alcaligenes eutrophus CH34. Mol Gen Genet 240: 181–187.

    Article  PubMed  CAS  Google Scholar 

  27. Schatz A, Bovell C (1952) Growth and hydrogenase activity of a new bacterium, Hydrogenomonas facilis. J Bacteriol 63: 87–98.

    PubMed  CAS  Google Scholar 

  28. Schlegel HG, Cosson JP, Baker JM (1991) Nickel-hyperaccumulating plants provide a niche for nickel-resistant bacteria. Bot Acta 104: 18–25.

    CAS  Google Scholar 

  29. Schmidt T, Schlegel HG (1989) Nickel and cobalt resistance of various bacteria isolated from soil and highly polluted domestic and industrial wastes. FEMS Microbiol Ecol 62: 315–328.

    Article  CAS  Google Scholar 

  30. Schmidt T, Stoppel RD, Schlegel HG (1991) High-level nickel resistance in Alcaligenes xylosoxydans 31A and Alcaligenes eutrophus KTO2. Appl Environ Microbiol 57: 3301–3309.

    PubMed  CAS  Google Scholar 

  31. Selifonova O, Burlage R, Barkay T (1993) Bioluminescent sensors for detection of bioavailable Hg (II) in the environment. Appl Environ Microbiol 59: 3083–3090.

    PubMed  CAS  Google Scholar 

  32. Shapiro JA (1977) Appendix B: Bacterial plasmids. In: DNA insertion, elements, plasmids and episomes, Bukhari AI, Shapiro JA, Adhya SL (eds), pp 601–703.

    Google Scholar 

  33. Silver S, Misra TK (1988) Plasmid-mediated heavy metal resistances. Ann Rev Microbiol 42: 717–743.

    Article  CAS  Google Scholar 

  34. Top E, De Smet I, Verstraete W, Dijkmans R, Mergeay M (1994) Exogenous isolation of mobilizing plasmids from polluted soils and sludges. Appl Environ Microbiol 60: 831–839.

    PubMed  CAS  Google Scholar 

  35. Top E, Mergeay M, Springael D, Verstraete W (1990) Gene escape model: transfer of heavy metal resistance genes from Escherichia coli to Alcaligenes eutrophus on agar plates and in soil samples. Appl Environ Microbiol 56: 2471–2479.

    PubMed  CAS  Google Scholar 

  36. van der Lelie D, Sadouk A, Ferhat A, Taghavi S, Toussaint A, Mergeay M (1992) Stress and survival in Alcaligenes eutrophus CH34: effects of temperature and genetic rearrangements. In: Gene transfers and environment. Gauthier MJ (ed.), Springer-Verlag.

    Google Scholar 

  37. Van Gijsegem F, Toussaint A (1982) Chromosome transfer and R-prime formation by an RP4:: Mini-Mu derivative in E. coli, S. typhimurium, K. pneumoniae, Pr. mirabilis. Plasmid 7: 30–44.

    Article  PubMed  Google Scholar 

  38. Williams JR, Morgan AG, Rouch DA, Brown NL, Lee BTO (1993) Copper-resistant enteric bacteria from United Kingdom and Australian piggeries. Appl Environ Microbiol 59: 2531–2537.

    PubMed  CAS  Google Scholar 

  39. Wuertz S, Miller CE, Pfister RM, Cooney JJ (1991) Tributyltin-resistant bacteria from estuarine and freshwater sediments. Appl Environ Microbiol 57: 2783–2789.

    PubMed  CAS  Google Scholar 

  40. Yang CH, Menge JA, Cooksey DA (1993) Role of copper resistance in competitive survival of Pseudomonas fluorescens in soil. Appl Environ Microbiol 59: 580–584.

    PubMed  CAS  Google Scholar 

  41. Schmidt T, Schlegel HG (1994) Combined Nickel-Cobalt-Cadmium Resistance encoded by the ncc locus of Alca/igenes xylosoxidans 31 A. J. Bacteriol. 176, 7045–7054.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mergeay, M. (1995). Heavy metal resistances in microbial ecosystems. In: Akkermans, A.D.L., Van Elsas, J.D., De Bruijn, F.J. (eds) Molecular Microbial Ecology Manual. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0351-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0351-0_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4156-0

  • Online ISBN: 978-94-011-0351-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics