Skip to main content

Extraction of microbial DNA from sewage and manure slurries

  • Chapter
Molecular Microbial Ecology Manual

Abstract

Sewage and manure slurries are environments where rather high numbers of micro-organisms are found. The microbial composition and metabolic activity is strongly dependent on several biotic and abiotic factors (e.g., nutrient availability, duration of storage, pretreatment). Sewage and manure slurries are supposed to play a central role in the natural circulation of pathogens, plasmid-encoded antibiotic or heavy metal resistance genes. Therefore, these habitats are of great interest in view of microbial ecology and hygiene. However, different bacteria of hygienic importance like Shigella dysenteria [7], Salmonella typhimurium [24], Salmonella enteritidis [16], Campylobacter jejuni [8,13,14], Escherichia coli [2,3], Vibrio cholera [5] or Vibrio vulnificus [26] were described to enter the viable but nonculturable state. The potential health hazard presented by pathogens existing in the nonculturable state may be significant because it has been shown that nonculturable bacteria can be resuscitated [11] and remain potentially pathogenic [4]. Furthermore, genetically modified micro-organisms used in industrial settings might be undeliberately released via sewage into the environment. In view of the fact that genetically modified strains like E. coli K12 producing biologically active substances might enter the viable but nonculturable state under environmental stress one should not rely on cultivation methods only when tracking the fate of recombinant micro-organisms in the environment. Therefore, microbial ecologists have recently developed methods obviating the need for cultivation by applying molecular techniques to directly extracted nucleic acids from different environmental habitats [6,12,21].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bej AK, Mahbubani MH, Atlas RM (1991) Detection of viable Legionella pneumophila in water by polymerase chain reaction. Appl Environ Microbiol 57: 597–600.

    PubMed  CAS  Google Scholar 

  2. Byrd JJ, Col well RR (1990) Maintenance of plasmids pBR322 and pUC8 in nonculturable Escherichia coli in the marine environment. Appl Environ Microbiol 56: 2104–2107.

    PubMed  CAS  Google Scholar 

  3. Byrd J J, Leahy JG, Colwell, RR (1992) Determination of plasmid DNA concentration maintained by nonculturable Escherichia coli in marine microcosms. Appl Environ Microbiol 58: 2266–2270.

    PubMed  CAS  Google Scholar 

  4. Colwell RR (1993) Nonculturable but still viable and potentially pathogenic. Zbl Bakt 279: 154–156.

    CAS  Google Scholar 

  5. Colwell RR, Brayton PR, Grimes DJ, Roszak DB, Huq SA, Palmer LM (1985) Viable but nonculturable Vibrio cholerae and related pathogens in the environment: implications for the release of genetically engineered micro-organisms. BioTechnology 3: 817–820.

    Article  Google Scholar 

  6. Holben WE, Jansson JK, Chelm BK, Tiedje JM (1988) DNA probe method for the detection of specific micro-organisms in the soil bacterial community. Appl Environ Microbiol 54: 703–711.

    PubMed  CAS  Google Scholar 

  7. Islam MS, Hasan MK, Miah MA, Sur, GC, Felsenstein A, Venkatesan M, Sack RB, Albert MJ (1993) Use of polymerase chain reaction and fluorescent-antibody methods for detecting viable but nonculturable Shigella dysenteriae type 1 in laboratory microcosms. Appl Environ Microbiol 59: 536–540.

    PubMed  CAS  Google Scholar 

  8. Jones DM, Sutcliffe EM, Curry A (1991) Recovery of viable but nonculturable Campylobacter jejuni. J Gen Microbiol 137: 2477–2482.

    Article  PubMed  CAS  Google Scholar 

  9. Jothikumar N, Khanna P, Kamatchiammal S, Murugan RP (1992) Rapid detection of waterborne viruses using the polymerase chain reaction and a gene probe. Intervirol 34: 184–191.

    CAS  Google Scholar 

  10. Koch WH, Payne WL, Wentz BA, Cebolla TA (1993) Rapid polymerase chain reaction for detection of Vibrio cholerae in foods. Appl Environ Microbiol 59: 556–560.

    PubMed  CAS  Google Scholar 

  11. Nilsson L, Oliver JD, Kjelleberg S (1991) Resuscitation of Vibrio vulnificus from viable but nonculturable state. J Bacteriol 173: 5054–5059.

    PubMed  CAS  Google Scholar 

  12. Ogram A, Sayler GS, Barkay TJ (1987) DNA extraction and purification from sediments. J Microbiol Meth 7: 57–66.

    Article  CAS  Google Scholar 

  13. Oyofo BA, Rollins DM (1993) Efficacy of filter types for detecting Campylobacter jejuni and Campylobacter coli in environmental water samples by polymerase chain reaction. Appl Environ Microbiol 59: 4090–4095.

    PubMed  CAS  Google Scholar 

  14. Rollins DM, Colwell RR (1986) Viable but nonculturable stage of Campylobacter jejuni and its role in survival in natural environments. Appl Environ Microbiol 52: 531–538.

    PubMed  CAS  Google Scholar 

  15. Romanowski G, Lorenz MG, Wackernagel W (1993) Use of polymerase chain reaction and electroporation of Escherichia coli to monitor the persistence of extracellular plasmid DNA introduced into natural soils. Appl Environ Microbiol 59: 3438–3446.

    PubMed  CAS  Google Scholar 

  16. Roszak DB, Grimes DJ, Colwell RR (1984) Viable but non-recoverable stage of Salmonella enteritidis in aquatic system. Can J Microbiol 30: 334–338.

    Article  PubMed  CAS  Google Scholar 

  17. Saano A, Kaijalainen S, Lindstrom K (1993) Inhibition of DNA immobilization to nylon membrane by soil compounds. Microb Releases 2: 153–160.

    CAS  Google Scholar 

  18. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  19. Smalla K, Cresswell N, Mendonca-Hagler LC, Wolters A, van Elsas JD (1993a) Rapid DNA extraction protocol from soil for polymerase chain reaction-mediated amplification. J Appl Bacteriol 74: 78–85.

    Article  CAS  Google Scholar 

  20. Smalla K, van Overbeek LS, Pukall R, van Elsas JD (1993b) Prevalence of nptII andTn5 in kanamycin-resistant bacteria from different environments. FEMS Microbiol Ecol 13: 47–58.

    Article  CAS  Google Scholar 

  21. Somerville CC, Knight IT, Straube WL, Colwell RR (1989) Simple, rapid method for direct isolation of nucleic acids from aquatic environments. Appl Environ Microbiol 55: 548–554.

    PubMed  CAS  Google Scholar 

  22. Steffan RJ, Atlas RM (1988) DNA amplification to enhance detection of genetically engineered bacteria in environmental samples. Appl Environ Microbiol 54: 2185–2191.

    PubMed  CAS  Google Scholar 

  23. Tebbe CC, Vahjen W (1993) Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl Environ Microbiol 59: 2657–2665.

    PubMed  CAS  Google Scholar 

  24. Turpin PE, Maycroft KA, Rowlands CL, Wellington EMH (1993) Viable but nonculturable salmonellas in soil. J Appl Bacteriol 74: 421–427.

    Article  PubMed  CAS  Google Scholar 

  25. Van Elsas JD, van Overbeek LS, Fouchier R (1991) A specific marker, pat, for studying the fate of introduced bacteria and their DNA in soil using a combination of detection techniques. Plant Soil 138: 49–60.

    Article  Google Scholar 

  26. Weichart D, Oliver JD, Kjelleberg S (1992) Low temperature induced non-culturability and killing of Vibrio vulnificus. FEMS Microbiol Lett 100: 205–210.

    Google Scholar 

  27. Wendt-Potthoff K, Niepold F, Backhaus H (1992) Fate of plant pathogenic pseudomonads in bean microcosms. In: Stewart-Tull DES, Sussmann M (eds) The release of genetically modified micro-organisms, pp. 181–182. Plenum Press, New York.

    Chapter  Google Scholar 

  28. Wilson K (1989) Preparation of genomic DNA from bacteria. In: Ausubel FM, Bent R, Kingston RE, Moore DD, Smith JA, Seidmann JG, Struhl K (eds) Current protocol in molecular biology. Greene and Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Smalla, K. (1995). Extraction of microbial DNA from sewage and manure slurries. In: Akkermans, A.D.L., Van Elsas, J.D., De Bruijn, F.J. (eds) Molecular Microbial Ecology Manual. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0351-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0351-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4156-0

  • Online ISBN: 978-94-011-0351-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics