Skip to main content

Direct and simultaneous extraction of DNA and RNA from soil

  • Chapter
Molecular Microbial Ecology Manual

Abstract

The direct extraction of DNA and RNA from soil is important for molecular ecological studies of the terrestrial environment. The structure and activities of natural bacterial communities can be better understood by analyses of their nucleic acids when the latter are recovered from soil samples by direct lysis instead of isolating them from bacterial cells, which have been separated from soil. One reason for this is that bacteria often are sticking strongly to soil particles and only part of them can be extracted [18, 30, 37]. On the other hand, most of the environmental bacteria, even when they are well extracted from the soil particles, fail to be cultured on laboratory media [6, 10, 44, 45]. In addition, the natural population densities of many bacteria could be rather low [22, 24].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amann RI, Zarda B, Stahl DA, Schleifer KH (1992) Identification of individual procariotic cells by using enzyme-labelled rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 58: 3007–3011.

    PubMed  CAS  Google Scholar 

  2. Dijkmans RA, Jagers A, Kreps S, Collard JM, Mergeay M (1993) Rapid method for purification of soil DNA for hybridization and PCR analysis. Microb Releases 2: 29–34.

    PubMed  CAS  Google Scholar 

  3. Erb RW, Wagner-Döbler I (1993) Detection of polychlorinated biphenyl degradation genes in polluted sediments by direct DNA extraction and polymerase chain reaction. Appi Environ Microbiol 59: 4065–4073.

    CAS  Google Scholar 

  4. Evguenieva-Hackenberg E, Selenska-Pobell S, Klingmüller W (1994) Persistance and stability of genetically manipulated derivatives of Enterobacter agglomerans in soil microcosms. FEMS Microbiol Ecology 15: 179–192.

    Article  CAS  Google Scholar 

  5. Flemming CA, Leung KT, Lee H, Trevors JT, Greer CW (1994) Survival of lux-lac- marked biosurfactant-producing Pseudomonas aeruginosa UG 2L in soil monitored by nonselective plating and PCR. Appi Environ Microbiol 60: 1606–1613.

    CAS  Google Scholar 

  6. Giovannoni SJ, Britschgi TB, Moyer CL, Field G (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345: 60–63.

    Article  PubMed  CAS  Google Scholar 

  7. Hahn D, Kester R, Starrenburg MJC, Akkermans ADL (1990) Extraction of ribosomal RNA from soil for detection of Frankia with oligonucleotide probes. Arch Microbiol 154: 329–335.

    Article  PubMed  CAS  Google Scholar 

  8. Henschke RB, Schmidt FRJ (1990) Plasmid mobilization from genetically engineered bacteria to members of the indigenous soil microflora in situ. Current Microbiol 20: 105–110.

    Article  CAS  Google Scholar 

  9. Herrick JB, Madsen EL, Batt CL, Ghirose WC (1993) Polymerase chain reaction amplification of naphtalene catabolic and 16S rRNA gene sequences from indigenous sediment bacteria. Appi Environ Microbiol 59: 687–694.

    CAS  Google Scholar 

  10. Josephson KL, Gerba CP, Pepper TL (1993) Polymerase chain reaction detection of nonviable bacterial pathogens. Appi Environ Microbiol 59: 3513–3515.

    CAS  Google Scholar 

  11. Kidambi SP, Ripp S, Miller RV (1994) Evidence for phage-mediated gene transfer among Pseudomonas aeruginosa strains on the phyloplane. Appi Environ Microbiol 60: 496–500.

    CAS  Google Scholar 

  12. Khanna M, Stotzky G (1992) Transformation of Bacilis subtilis by DNA bound on montmorillonite and effect of DNase on the transforming ability of bound DNA. Appi Environ Microbiol 58: 1930–1939.

    CAS  Google Scholar 

  13. Kopczynski ED, Bateson MM, Ward DD (1994) Recognition of chimeric small subunit ribosomal DNAs composed of genes from uncultivated microorganisms. Appi Environ Microbiol 60: 746–748.

    CAS  Google Scholar 

  14. Lorenz MG, Wackernagel W (1990) Natural genetic transformation of Pseudomonas stutzeri by sand adsorbed DNA. Arch Microbiol 154: 380–385.

    Article  PubMed  CAS  Google Scholar 

  15. Moran AM, Torsvik VL, Torsvik T, Hodson RF (1993) Direct extraction and purification of RNA for ecological studies. Appi Environ Microbiol 59: 915–918.

    CAS  Google Scholar 

  16. Moré MI, Herrick JB, Silva MC, Ghiorse WC, Madsen EL (1994) Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbiol DNA from sediment. Appi Environ Microbiol 60: 1572–1580.

    Google Scholar 

  17. Nannipieri P, Ciardi C, Badalucco L, Casella S (1986) A method to determinate soil DNA and RNA. Soil Biol and Biochem 18: 275–281.

    Article  CAS  Google Scholar 

  18. Ogram A, Sayler GS, Barkay TJ (1987) DNA extraction and purification from sediments. J Microbiol Meth 7: 57–66.

    Article  CAS  Google Scholar 

  19. Ogram AV, Mathot ML, Harsh JB, Boyle J, Pettigrew CA, JR (1994) Effects of DNA polymer length on its adsorption to soils. Appi Environ Microbiol 60: 393–396.

    CAS  Google Scholar 

  20. Ogunseitan OA, Deldago IL, Tsai YL, Olson BH (1991) Effect of 2-Hydroxybenzoate on the maintenance of naphtalene degrading Pseudomonas in seeded and unseeded soil. Appi Environ Microbiol 57: 2873–2879.

    CAS  Google Scholar 

  21. Pillai SD, Josephson, Bailey RL, Gerba CP (1991) Rapid method for processing soil samples for polymerase chain reaction amplification of specific gene sequences. Appi Environ Microbiol 57: 2283–2286.

    CAS  Google Scholar 

  22. Picard C, Ponsonnet C, Paget E, Nesme X, Simonet P (1992) Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction. Appi Environ Microbiol 58: 2717–2722.

    CAS  Google Scholar 

  23. Pichard SL, Paul JH (1992) Detection of gene expression in genetically engineered microorganisms and natural phytoplankton populations in the marine environment by mRNA analysis. Appi Environ Microbiol 57: 1721–1727.

    Google Scholar 

  24. Pichard SL, Paul JH (1993) Gene expression per gene dose, a special measure of gene expression in aquatic microcosms. Appi Environ Microbiol 59: 451–457.

    CAS  Google Scholar 

  25. Porteous LA, Armstrong JL (1993) A simple mini-method to extract DNA directly from soil for use with polymerase chain reaction amplification. Curr Microbiol 27: 115–118.

    Article  PubMed  CAS  Google Scholar 

  26. Richaume A, Angle JC, Sadowsky M (1989) Influence of soil variables on in situ plasmid transfer from Escherichia coli to Rhizobium fredii. Appi Environ Microbiol 5: 1730–1734.

    Google Scholar 

  27. Recorbet G, Picard C, Normand P, Simonet P (1993) Kinetics of the persistance of chromosomal DNA from genetically engineered Escherichia coli introduced into soil. Appi Environ Microbiol 59: 4289–4294.

    CAS  Google Scholar 

  28. Romanowski G, Lorenz M, Sayler G, Wackernagel W (1992) Persistence of free plasmid in soil monitored by various methods, including a transformation assay. Appi Environ Microbiol 58: 3012–3019.

    CAS  Google Scholar 

  29. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A laboratory Manual 2nd Ed. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  30. Sayler GS, Fleming J, Applegate B, Werner C, Nikbakht K (1989) Microbial community analysis using environmental nucleic acid extracts. In: Hattori T, Ishida Y, Maruyama Y, Morita Y, Ushida A (eds) Recent Advances in Microbial Ecology, Proceedings of the 5th International Symposium on Microbial Ecology, pp. 658–662.

    Google Scholar 

  31. Sayler GS, Layton AC (1990) Environmental application of nucleic acid hybridization. Ann Rev Microbiol 44: 625–648.

    Article  CAS  Google Scholar 

  32. Selenska S, Klingmüller W (1991) DNA recovery and direct detection of Tn5 sequences from soil. Lett Appi Microbiol 13: 21–24.

    Article  CAS  Google Scholar 

  33. Selenska S, Klingmüller W (1991) Direct detection of nif-gene sequences of Enterobacter agglomerans in soil. FEMS Microbiol Lett 80: 243–246.

    Article  CAS  Google Scholar 

  34. Selenska S, Klingmüller W (1992) Direct recovery and molecular analysis of DNA and RNA from soil. Microb Releases 1: 41–46.

    PubMed  CAS  Google Scholar 

  35. Smalla K, Cresswell N, Mendonca-Hagler LC, Wolters A, Van Elsas JD (1993) Rapid DNA extraction protocol from soil for polymerase chain reaction-mediated amplification. J Appi Bacteriol 74: 78–85.

    Article  CAS  Google Scholar 

  36. Smit E, Van Elsas JD, Van Veen JA, De Vos WM (1991) Detection of plasmid transfer from Pseudomonas fluorescens to indigenous bacteria in soil using bacteriophage ϕ-R2F for donor counterselection. Appi Environ Microbiol 57: 3482–3488.

    CAS  Google Scholar 

  37. Steffan RJ, Goksoyr J, Bej AK, Atlas RM (1988) Recovery of DNA from soils and sediments. Appi Environ Microbiol 54: 2908–2915.

    CAS  Google Scholar 

  38. Steffan RJ, Atlas RM (1988) DNA amplification to enhance detection of genetically engineered bacteria in environmental samples. Appi Environ Microbiol 54: 2185–2191.

    CAS  Google Scholar 

  39. Tebbe CC, Vahjen W (1993) Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appi Environ Microbiol 59: 2675–2665.

    Google Scholar 

  40. Thiem SM, Krumme ML, Smith RL, Tiedje JM (1994) Use of molecular techniques to evaluate the survival of a microorganism injected into an aquifer. Appi Environ Microbiol 60: 1059–1067.

    CAS  Google Scholar 

  41. Tsai YL, Olson BH (1991) Rapid method for direct extraction of DNA from soil and sediments. Appi Environ Microbiol 57: 1070–1074.

    CAS  Google Scholar 

  42. Tsai YL, Olson BH (1992) Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction. Appi Environ Microbiol 58: 2292–2295.

    CAS  Google Scholar 

  43. Tsai Y, Park MJ, Olson BH (1991) Rapid method for direct extraction of mRNA from seeded soils. Appi Environ Microbiol 57: 765–768.

    CAS  Google Scholar 

  44. Van Kuppeveld FJM, Van der Logt JTM, Angulo AF, Van Zoest MJ, Quint WGV, Niesters HGM, Galama JMD, Melchers WJG (1992) Genus- and species-specific identification of mycoplasmas by 16S rRNA amplification. Appi Environ Microbiol 58: 2606–2615.

    Google Scholar 

  45. Ward DM, Weller R, Bateson MM (1990) 16S rRNA sequences reveal numerous unculturated microorganisms in a natural community. Nature 345: 63–65.

    Article  PubMed  CAS  Google Scholar 

  46. Zeph LR, Stotzky G (1989) Use of botinylated DNA probe to detect bacteria transduced by bacteriophage P1 in soil. Appl Environ Microbiol 55: 661–665.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Selenska-Pobell, S. (1995). Direct and simultaneous extraction of DNA and RNA from soil. In: Akkermans, A.D.L., Van Elsas, J.D., De Bruijn, F.J. (eds) Molecular Microbial Ecology Manual. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0351-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0351-0_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4156-0

  • Online ISBN: 978-94-011-0351-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics