Skip to main content

Coherent and Incoherent Laser Control of Photochemical Events

  • Chapter
Frontiers of Chemical Dynamics

Part of the book series: NATO ASI Series ((ASIC,volume 470))

  • 185 Accesses

Abstract

Selectivity is at the heart of Chemistry and the control of reactions using lasers has been a goal for decades. Recently, we[1]–[20] and other groups[21]–[30] have demonstrated theoretically that one can achieve this goal by using quantum interference phenomena. We showed that phases acquired by a quantum systems while excited by lasers enable one to control quantum interferences, and hence the outcome, of many dynamical processes. Initial experimental tests[31]–[36] of our approach, termed Coherent Control (CC), have confirmed many of the theoretical predictions and proven the viability of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.Brumer and M. Shapiro, Chem. Phys. Lett. 126, 541 (1986).

    Article  ADS  Google Scholar 

  2. M. Shapiro and P. Brumer, J. Chem. Phys. 84, 4103 (1986).

    Article  ADS  Google Scholar 

  3. P. Brumer and M. Shapiro, Faraday Disc. Chem. Soc. 82, 177 (1986).

    Article  Google Scholar 

  4. M. Shapiro and P. Brumer, J. Chem. Phys. 84, 4103 (1986).

    Article  ADS  Google Scholar 

  5. C. Asaro, P. Brumer and M. Shapiro, Phys. Rev. Lett. 60, 1634 (1988).

    Article  ADS  Google Scholar 

  6. M. Shapiro, J. Hepburn and P. Brumer, Chem. Phys. Lett. 149, 451 (1988).

    Article  ADS  Google Scholar 

  7. P. Brumer and M. Shapiro, J. Chem. Phys. 90, 6179 (1989).

    Article  ADS  Google Scholar 

  8. G. Kurizki, M. Shapiro and P. Brumer, Phys. Rev. B 39, 3435 (1989).

    Article  ADS  Google Scholar 

  9. T. Seideman, M. Shapiro and P. Brumer, J. Chem. Phys. 90, 7136 (1989).

    Article  ADS  Google Scholar 

  10. J. Krause, M. Shapiro and P. Brumer, J. Chem. Phys. 92, 1126 (1990).

    Article  ADS  Google Scholar 

  11. I. Levy, M. Shapiro and P. Brumer J. Chem. Phys. 93, 2493 (1990).

    Article  ADS  Google Scholar 

  12. P. Brumer and M. Shapiro, Accounts Chem. Res. 22, 407 (1989).

    Article  Google Scholar 

  13. P. Brumer and M. Shapiro, Chem. Phys. 139, 221 (1989).

    Article  ADS  Google Scholar 

  14. C.K. Chan , P. Brumer and M. Shapiro, J. Chem. Phys. 94, 2688 (1991).

    Article  ADS  Google Scholar 

  15. M. Shapiro and P. Brumer, J. Chem. Phys. 95, 8658 (1991).

    Article  ADS  Google Scholar 

  16. P. Brumer and M. Shapiro, Ann. Rev. Phys. Chem., 43, 257 (1992).

    Article  ADS  Google Scholar 

  17. M. Shapiro and P. Brumer, J. Chem. Phys. 97, 6259 (1992).

    Article  ADS  Google Scholar 

  18. Z. Chen, P. Brumer and M. Shapiro, Chem. Phys. Lett. 198, 498 (1992).

    Article  ADS  Google Scholar 

  19. X-P. Jiang, P. Brumer and M. Shapiro “Partially Coherent Laser Pulses in Coherent Control of Chemical Reactions” J. Chem. Phys., ( to be submitted).

    Google Scholar 

  20. J. Dods, P. Brumer and M. Shapiro, “Two Color Coherent Control with SEP Preparation: Electronic Branching in the Na2 Photodissociation” Can. J. Chem., submitted.

    Google Scholar 

  21. D. J. Tannor and S. A. Rice, J. Chem. Phys. 83, 5013 (1985)

    Article  ADS  Google Scholar 

  22. D. J. Tannor, R. Kosloff and S. A. Rice, J. Chem. Phys. 85, 5805 (1986).

    Article  ADS  Google Scholar 

  23. S.A. Rice, D.J. Tannor, and R. Kosloff, J. Chem. Soc. Faraday Trans. 2, 82, 2423 (1986)

    Article  Google Scholar 

  24. D.J. Tannor, and S.A. Rice, Adv. Chem. Phys. 70, 441 (1988).

    Article  Google Scholar 

  25. R. Kosloff, S.A. Rice, P. Gaspard, S. Tersigni, and D.J. Tannor , Chem. Phys. 139, 201 (1989).

    Article  Google Scholar 

  26. S. Tersigni , P. Gaspard and S.A. Rice, J. Chem. Phys. 93, 1670 (1990).

    Article  ADS  Google Scholar 

  27. S. Shi, A. Woody, and H. Rabitz, J. Chem. Phys. 88, 6870 (1988)

    Article  ADS  Google Scholar 

  28. S. Shi and H. Rabitz, Chem. Phys. 139, 185 (1989).

    Article  ADS  Google Scholar 

  29. A.P. Peirce, M. Dahleh, and H. Rabitz, Phys. Rev. A 37, 4950 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  30. S. Shi, and H. Rabitz, J. Chem. Phys. 92, 364 (1990).

    Article  ADS  Google Scholar 

  31. J.L. Krause, R.M. Whitnell, K.R. Wilson, Y. Yan and S. Mukamel, J. Chem. Phys. 99, 6562 (1993)

    Article  ADS  Google Scholar 

  32. W. Jakubetz, B. Just, J. Manz, and H.-J. Schreier, J. Phys. Chem. 94, 2294 (1990).

    Article  Google Scholar 

  33. C. Chen, Y-Y. Yin, and D.S. Elliott, Phys. Rev. Lett. 64, 507 (1990)

    Article  ADS  Google Scholar 

  34. ibid ,65, 1737 (1990).

    Article  ADS  Google Scholar 

  35. S.M. Park, S-P. Lu, and R.J. Gordon, J. Chem. Phys. 94, 8622 (1991)

    Article  ADS  Google Scholar 

  36. S-P. Lu, S.M. Park, Y. Xie, and R.J. Gordon, J. Chem. Phys. 96, 6613 (1992).

    Article  ADS  Google Scholar 

  37. N.F. Scherer, A.J. Ruggiero, M. Du, G.R. Fleming, J. Chem. Phys. 93, 856 (1990).

    Article  ADS  Google Scholar 

  38. K.J. Boiler, A. Lmamoglu and S.E. Harris, Phys. Rev. Lett. 66, 2593 (1991).

    Article  ADS  Google Scholar 

  39. B.A. Baranova, A.N. Chudinov, and B. Ya Zel’dovitch, Opt. Comm., 79, 116 (1990).

    Article  ADS  Google Scholar 

  40. Y-Y. Yin, C. Chen, D.S. Elliott, and A.V. Smith, Phys. Rev. Lett. 69, 2353 (1992)

    Article  ADS  Google Scholar 

  41. For a discussion of the basic principles of coherence, quantum interference, time dependence, which are fundamental to coherent control, see, e.g., J.D. Macomber, “The Dynamics of Spectroscopic Transitions”, (Wiley, N.Y., 1976).

    Google Scholar 

  42. This the asymptotic condition of scattering theory [see, J.R. Taylor, “Scattering Theory”, (J. Wiley, N.Y., 1972)].

    Google Scholar 

  43. M. Shapiro and R. Bersohn, J. Chem. Phys. 73, 3810 (1980).

    Article  ADS  Google Scholar 

  44. M. Shapiro, J.Phys. Chem, 90, 3644 (1986).

    Article  Google Scholar 

  45. M. Shapiro, J. Chem. Phys. 56 2582 (1972)

    Article  ADS  Google Scholar 

  46. M. Shapiro and P. Brumer, in “Methods of Laser Spectroscopy”, ed. A. Prior, A. Ben-Reuven and M. Rosenbluh (Plenum, N.Y., 1986).

    Google Scholar 

  47. Z. Chen, M. Shapiro and P. Brumer, “Control of Photodissociation Branching Ratios via Two Color Frequency Tuning of Intense Laser Fields” Phys. Rev. Lett. - submitted.

    Google Scholar 

  48. M.S. Child, Mol. Phys. 32, 495 (1976).

    Article  Google Scholar 

  49. Z. Chen, P. Brumer, and M. Shapiro, J. Chem. Phys. 98, 6843 (1993).

    Article  ADS  Google Scholar 

  50. S. Chelkowski and A.D. Bandrauk, Chem. Phys. Lett. 186, 284 (1991)

    Article  ADS  Google Scholar 

  51. A.D. Bandrauk, J.M. Gauthier, J.F. McCann, Chem. Phys. Lett. 200, 399 (1992)

    Article  ADS  Google Scholar 

  52. S. Chelkowski, A.D. Bandrauk, and P.B. Corkum, Phys. Rev. Lett. 65, 2355 (1990).

    Article  ADS  Google Scholar 

  53. A. Szöke, K.C. Kulander, and J.N. Bardsley, J. Phys. B 24, 3165 (1991)

    Article  ADS  Google Scholar 

  54. R.M. Potvliege and P.H.G. Smith, J. Phys. B 25, 2501 (1992)

    Article  ADS  Google Scholar 

  55. E. Charron, A. Guisti-Suzor and F.H. Mies, Phys. Rev. Lett. 71, 692 (1993).

    Article  ADS  Google Scholar 

  56. Contrary to popular expectation, perturbation theory does not imply a small total photodissociation yield. Computational results (P. Brumer and M. Shapiro - to be published) indicate that perturbation theory is quantitatively correct for dissociation probabilities as large as 0.2.

    Google Scholar 

  57. M. Shapiro and P. Brumer, J. Chem. Phys. 98, 201 (1993).

    Article  ADS  Google Scholar 

  58. N.E. Henriksen and B. Amstrup, Chem. Phys. Lett. 213, 65 (1993)

    Article  ADS  Google Scholar 

  59. J. Chem. Phys. 97, 8285 (1993)

    Google Scholar 

  60. K.R. Wilson, private communication.

    Google Scholar 

  61. A.R. Edmonds, “Angular Momentum in Quantum Mechanics” (Princeton University Press, Princeton 2nd edition, 1960).

    Google Scholar 

  62. I. Levy and M. Shapiro, J. Chem. Phys. 89, 2900 (1988).

    Article  ADS  Google Scholar 

  63. R. Bavli and H. Metiu, Phys. Rev. Lett., ().

    Google Scholar 

  64. M. Yu Ivanov, P.B. Corkum, and P. Dietrich, Laser Physics, 3, 375 (1993).

    Google Scholar 

  65. T. Nakajima and P. Lambropoulos, Phys. Rev. Lett. 70, 1081 (1993).

    Article  ADS  Google Scholar 

  66. P.Bmmer and M.Shapiro, Adv. Chem. Phys. 60 371, K. P. Lawley, Ed., (Wiley- Interscience Pub., 1986).

    Google Scholar 

  67. M. Shapiro and H. Bony, J. Chem. Phys. 83, 1588 (1985)

    Article  ADS  Google Scholar 

  68. G. G. Balint-Kurti and M.Shapiro, Adv. Chem. Phys. 60 403, K. P. Lawley, Ed., (Wiley-Interscience Pub., 1986).

    Article  Google Scholar 

  69. A. D. Bandrauk and O. Atabek, Adv. Chem. Phys. 73, 823 (1989)

    Article  Google Scholar 

  70. The potential curves and the relevant electronic dipole moments are taken from: I. Schmidt, Ph.D. Thesis, Kaiserslautern University, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shapiro, M., Brumer, P. (1995). Coherent and Incoherent Laser Control of Photochemical Events. In: Yurtsever, E. (eds) Frontiers of Chemical Dynamics. NATO ASI Series, vol 470. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0345-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0345-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4153-9

  • Online ISBN: 978-94-011-0345-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics