Skip to main content

Subspace Molecular Dynamics for Long Time Phenomena

  • Chapter
Frontiers of Chemical Dynamics

Part of the book series: NATO ASI Series ((ASIC,volume 470))

  • 180 Accesses

Abstract

This paper presents an analysis of molecular dynamics towards an understanding of the contribution of slow and fast modes and proposes an integration method, the “Subspace Molecular Dynamics”. The analysis of exact molecular dynamics for biological polymers reveals that only a very small proportion of the slow motion modes, of the order to a few percent to ten percent, participate in the fundamental dynamics. Furthermore, the calculations presented in this paper indicate that the system remains in subspaces for relatively long times of the order of picoseconds. Both of these observations suggest that one could implement these ideas in working directly with the subspace. The major difficulty is that although the system evolves in a low dimensional subspace, the basis vectors defining this subspace rotate in time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McCammon, A. J. and Harvey, C. S.(1987) Dynamics of Proteins and Nucleic Acids, Cambridge University Press

    Book  Google Scholar 

  2. Wilson Jr, E. B. Decius, J. C. and Cross, P.C. (1980) Molecular Vibrations, Dover Pub. NY.

    Google Scholar 

  3. Van Gunsteren, W.F., Berendsen, H.J.C., Hermans, J.,Hol, W.G.J., Postma, J.P.M. (1983) Computer simulation of the dynamics of hydrated protein crystals and its comparison with x-ray data. Proc. Natl. Acad. Sci. U.S.A. 80:4314319.

    Article  Google Scholar 

  4. Berendsen,H.J.C, Van Gunsteren, W.F., Zwindermann, H.R.J., Geurtsen, R.G. (1986) Simulations of proteins in water. Ann. NY Acad. Sci. 482:269–286.

    Article  ADS  Google Scholar 

  5. Allen, M.P. and Tildesley, D.J., (1989) Computer Simulation of Liquids, clarendon, Oxford.

    Google Scholar 

  6. Adelman. S. A., (1984) Chemical Reaction Dynamics in Liquid Solution, in Advances in Chemical Physics Vol III ed. by I. Prigogine and S. A. Rice, John Wiley and Sons.

    Google Scholar 

  7. Noguti, T. and Go, n. (1983) Dynamics of Native Globular Proteins in Terms of dihedral Angles, Journal of the Physical Society of Japan 52, 3283–3288.

    Article  ADS  Google Scholar 

  8. Gunsteren, V. and Karplus, M. (1982)The effect of constraints on the dynamics of macromolecules Macromolecules, 15, 1529–1542.

    Google Scholar 

  9. Ryckaert, J.P. (1977), Numerical Integration of the Cartesian Equations of motion of a system with constraints : Molecular Dynamics of n-Alkenes, J. Comp. Phys.23, 327.

    Article  ADS  Google Scholar 

  10. Ryckaert, J.P. (1985), Special geometrical costrains in the molecular dynamics of chain molecules, Molecular Phys., 55,549.

    Article  ADS  Google Scholar 

  11. Turnen, J, Chim H, Lupi V.,Weiner P., Gallions and Singh Chandra (1992), Researchers Apply Variable reduction Techniques to Molecular simulations. Part 1, chem Design Automation News. 7,12.39 and Part2. id, (1993)

    Google Scholar 

  12. Go, N., Noguti, T. and Nishikawa, T. (1983) Dynamics of a small globular protein in terms of low frequency vibrational modes, Proc. Natl. acad. Sci. 80, 3696–3700.

    Article  ADS  Google Scholar 

  13. Brooks, B. and Karplus, M. (1985) Normal modes for specific motions of macromolecules: Application to the hinge-bending mode of lysozyme, Proc. Natl. Acad. Sci. 82, 4995–4999.

    Article  ADS  Google Scholar 

  14. Thacher, H. A. Rabitz, A Askar, (1990) Discrete-Continuum Hybrid model for Dynamicswith Applications:Desorption of Adsorbates and relaxation of Lattice Inclusions, T.J. Chem.Phys. 93, 4673.

    Article  ADS  Google Scholar 

  15. Askar, A. (1994) Modelling of Biological Polymers: Discrete and Continuum Mechanics Formulations, NATO ASI Series H 84, 1–35.

    Google Scholar 

  16. Hao, H.M. and Harvey, C. S. (1992) Analyzing the Normal Mode Dynamcis of

    Google Scholar 

  17. Macromolecules by the Component Synthesis Method, biopolymers 32, 1393–1405.

    Google Scholar 

  18. Hao, H.M. and Scheraga, A.H. (1994) Analyzing the Normal Mode Dynamics of Macromolecules by the Component Synthesis Method : Residue Clustering and Multiple Component Approach, Biopolymers 34. 321–335.

    Article  Google Scholar 

  19. Guyan, R.J. (1965), Amer. Inst. Aero. Astro J.3, 380.

    Google Scholar 

  20. Ookuma, M. and Nagamatsu, A. (1984) Analysis of Vibration by Component Mode Synthesis Method, Bulletin of JSME 27, 529–532.

    Article  Google Scholar 

  21. Rosenthal, D. (1988), order N Formulationr for equations of motion of multibody systems. Proceedings of the workshop on Multibody Simulation, JPL D-5190, 3, 1122.

    Google Scholar 

  22. Chun, M.H., Turner, D.J. and Frisch, P.H. (1989) Experimental Validation of Order (N) Discos, Paper AAS 89, 457 AAS/AIAA Astrodynamics Specialist Conference.

    Google Scholar 

  23. Space, B., Rabitz, H. and Askar, A. (1993) Long time scale molecular dynamics subspace integration method applied to an harmonic crystals and glasses, J. Chem. Phys. 99, 9070– 9079.

    Article  ADS  Google Scholar 

  24. A. .Askar. Space, B. and Rabitz, H. The Subspace Method for Long Time Scale Molecular Dynamics, (1994) J. Phys. Chem. (to appear).

    Google Scholar 

  25. Brooks, B. and Karplus, M. (1983) Harmonic dynamics of proteins: Normal modes and fluctuations in bovine pancreatic trypsin inhibitor, Proc. Natl. Acad. Sci. 80, 6571–6575.

    Article  ADS  Google Scholar 

  26. Amadei, A., Linssen, B. M. A and Berendsen, J.C.H., (1993) Essential Dynamics of Proteins, Proteins: Structure, Function and Genetics 17, 412–425.

    Article  Google Scholar 

  27. Levy, M. R. and Karplus, M. (1979) Vibrational Approach to the Dynamics of an α-Helix, Biopolymers 18, 2465–2495.

    Article  Google Scholar 

  28. Levy, M. R., Perahia, D. and Karplus, M. (1981) Molecular dynamics of an α-helical polypeptide: Temperature dependence and deviation from harmonic behavior, Proc. Natl. Acad. Sci. 79, 1346–1350.

    Article  ADS  Google Scholar 

  29. Derreumaux, P. and Vergoten, G. (1991) Effect of Urey-Bradley-Shimanouchi Force Field on the harmonic Dynamics of Proteins. Wiley-Liss Inc. 11, 120–132.

    Google Scholar 

  30. Levitt, M., Sander, C. and Stem, S. P. (1983) protein Normal-mode dynamics: Trypsin Inhibitor, crambin, ribonuclease and Lysozyme, J. Mol. Biol. 181,423–447.

    Article  Google Scholar 

  31. Teeter, M.M. and Case, (1990) Harmonic anod quasiharmonic Descriptions ou Cramlin, The Journal of Physical Chemistry 94, 8092–8097.

    Article  Google Scholar 

  32. Teeter, M.M. and Case, (1990) Harmonic and Quasiharmonic Descriptions of Crambin, The Journal of Ohyscal Chemistry 94, 8092–8097.

    Google Scholar 

  33. Askar, A., Owens, R. and Rabitz, H. (1993) Molecular dynamics with Langevin equation using local harmoncis and Chandrasekhar’s convolution, J.Chem. Phys. 99, 5316–5325.

    Article  ADS  Google Scholar 

  34. A. Askar, (1993) Finite Element Method for Quantum Scattering, in Numerical Grid Methods and Their Application to Schrödinger’s Equation, ed C.Cerjan, Kluwer Academic Publishers, Series C: Mathematical and Physical Sciences, Vol. 412.

    Google Scholar 

  35. A. Askar. (1974) A Non-perturbative Approach to Transition Probabilities by the Stroboscopic Method, Phys. Rev. A, 10, 2395 .

    Article  ADS  Google Scholar 

  36. Tuckerman. M. and Berne B.J., (1992) Reversible Multiple time scale molecular dynamics, J.Chem. Phys. 97,1990.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Askar, A. (1995). Subspace Molecular Dynamics for Long Time Phenomena. In: Yurtsever, E. (eds) Frontiers of Chemical Dynamics. NATO ASI Series, vol 470. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0345-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0345-9_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4153-9

  • Online ISBN: 978-94-011-0345-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics