Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 298))

  • 163 Accesses

Abstract

Semiconductor structures that exhibit quantum confinement effects in three dimensions have attracted considerable attention owing to their potential as tools for exploration of conceptually simple mesoscopic systems, and also because of their potential for new optoelectronic devices. In order to observe unique quantum dot transport and optical properties at room temperature, the characteristic dimensions of the carrier confining potentials and structures should be less than 10–20 nm. Although the electronic structure issues are quite different for group III–V semiconductors (prototypically GaAs/AlGaAs) than for group IV semiconductors (prototypically Si and Ge), growth of dense arrays of small (≤ 10 nm), uniformly-sized structures are important goals for both materials systems. In particular, there is a compelling need for development of synthesis techniques capable of making denselypacked,uniformly-sized structures which are less than 10–15 nm in size, over large areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cibert, J., Petroff, P.M., Dolan, G.J., Pearton, S.J., Gossard, A.C. and English, J.H., (1986) Appl. Phys. Lett., 49 1275.

    Article  CAS  Google Scholar 

  2. Kash, K, Scherer, A., Worlock, J.M., Craighead, H.G., Tamargo, M.C., (1986) Appl. Phys. Lett., 49 1043.

    Article  CAS  Google Scholar 

  3. Temkin, H, Dolan, G.J., Panish, M.B., Chu, S.N.G., (1986) Appl. Phys. Lett., 50, 413.

    Article  Google Scholar 

  4. Leonard, D., Krishnamurthy, M., Reaves, C.M., Denbaars, S.P., and Petroff, P.M., (1993) Appl. Phys. Lett. 63, 3203.

    Article  CAS  Google Scholar 

  5. Lebens, J.A., Tsai, C.S., Vahala, K.J. and Kuech, T.F., (1990), Appl. Phys. Lett. 56 2642.

    Article  CAS  Google Scholar 

  6. Galeuchet, Y.D., Rothuizen, H. and Roentgen, P., (1991) Appl. Phys. Lett.58 2423.

    Article  CAS  Google Scholar 

  7. Nagumune, Y., Tsukamoto, S., Nishioka, M. and Arakawa, Y., (1993), J.Crystal Growth 126 707.

    Article  Google Scholar 

  8. Kuech, T.F., Goorsky, M.S., Tischler, M.A., Palevski, A., Solomon, P., Potemski,R., Tsai, C.S., Lebens, J.A., and Vahala, K.J., (1991) J. Crystal Growth 126, 707.

    Google Scholar 

  9. Kuech, T.F., Tischler, M.A., and Potemski, R. (1989) Appl. Phys. Lett., 54 910.

    Article  CAS  Google Scholar 

  10. Tsai, C.S., Lee, R.B. and Vahala, K.J., (1995), Mat. Res. Soc. Symp. Proc. 358 969.

    Article  CAS  Google Scholar 

  11. Canham, L.T., (1990) Appl. Phys. Lett., 57 1046.

    Article  CAS  Google Scholar 

  12. Delley, B. and Steigmeier, E.F., (1993) Phys. Rev., B47, 1397.

    Google Scholar 

  13. Takagahara, T., and Takeda, K., (1992) Phys. Rev., B46, 15578.

    Google Scholar 

  14. Atwater, H.A., Shcheglov, K.V., Wong, S.S., Yang, C.M., Vahala, K.J., Flagan, R.C., Polman, A. and Brongersma, M., (1994) Mat. Res. Soc. Symp. Proc. 316, 409.

    Article  CAS  Google Scholar 

  15. Yang, C.M., Shcheglov K.V. , Vahala, K.J. and Atwater, H.A. (1995) Nucl. Instrum. and Methods B to be published.

    Google Scholar 

  16. Shcheglov, K.V., Yang, CM., Vahala, K.J., and Atwater, H.A., (1995), Appl. Phys. Lett., 66 745.

    Article  CAS  Google Scholar 

  17. Song,K.S. and Williams, R.T. (1993) in Self-Trapped Excitons, Springer Verlag, New York, pp. 270–299.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Atwater, H.A. et al. (1995). Group III–V and Group IV Quantum Dot Synthesis. In: Eberl, K., Petroff, P.M., Demeester, P. (eds) Low Dimensional Structures Prepared by Epitaxial Growth or Regrowth on Patterned Substrates. NATO ASI Series, vol 298. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0341-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0341-1_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4151-5

  • Online ISBN: 978-94-011-0341-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics