Skip to main content

The center manifold technique and complex dynamics of parabolic equations

  • Chapter
Topological Methods in Differential Equations and Inclusions

Part of the book series: NATO ASI Series ((ASIC,volume 472))

  • 338 Accesses

Abstract

Consider the following scalar parabolic equation

EquationSourceu_t - Lu = f\left( {x,u,\nabla u} \right), t > 0,x \in \Omega$$
((1))

with Dirichlet boundary condition

EquationSource u\left( {u,t} \right) = 0, t > 0,x \in \partial \Omega $$
((2))

or Neumann boundary condition

EquationSource \frac{\partial } {{\partial v}}u\left( {x,t} \right) = 0, t > 0,x \in \partial \Omega $$
((3))

Here Ω ⊂ ℝN is a smooth bounded domain (most frequently just the open unit ball), L is a second order selfadjoint uniformly elliptic differential operator with smooth coefficients (most often Lu = Δu + a(x)u where a is a smooth function on EquationSource \bar \Omega $$ ) and v is the outer normal to the boundary ∂Ω of Ω. Finally,

$$ f:\left( {x,s,w} \right) \in \bar \Omega \times \mathbb{R} \times \mathbb{R}^N \mapsto f\left( {x,s,w} \right) \in \mathbb{R} $$

is some nonlinearity.

In these lectures we describe some recent realization results for vector fields or jets of vector fields on invariant manifolds of Eq. (1)–(2) and (1)–(3) and give an example of Eq. (1)–(2) with gradient independent nonlinearity and admitting a nonconvergent bounded trajectory. Some necessary mathematical background (center manifold theorem, Nash-Moser inverse mapping theorem) is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. V. Babin and M. I. Vishik, Regular attractors of semigroups of evolutionary equations, J. Math. Pures Appl. 62 (1983), 441–491.

    MathSciNet  MATH  Google Scholar 

  2. P. Brunovský, P. Poláčik and B. Sandstede, Convergence in general periodic parabolic equations in one space dimension, Nonlinear Anal. 18 (1992), 209–215.

    Article  MathSciNet  MATH  Google Scholar 

  3. X-Y. Chen and H. Matano, Convergence, asymptotic periodicity, and finite-point blow up in one-dimensional semilinear heat equations, J. Differential Equations 78 (1989), 160–190.

    Article  MathSciNet  MATH  Google Scholar 

  4. X.-Y. Chen and P. Poláčik, Gradient-like structure and Morse decompositions for time-periodic one-dimensional parabolic equations, preprint.

    Google Scholar 

  5. S.-N. Chow and K. Lu, Invariant manifolds for flows in Banach spaces, J. Differential Equations 74 (1988), 285–317.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Courant and D. Hilbert, Methods of Mathematical Physics, Interscience, New York, 1953.

    Google Scholar 

  7. E. N. Dancer, On the existence of two-dimensional invariant tori for scalar parabolic equations with time periodic coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 18 (1991), 456–471.

    MathSciNet  Google Scholar 

  8. T. Faria and L. Magalhaes, Realization of ordinary differential equations by retarded functional differential equations in neighborhoods of equilibrium points, preprint.

    Google Scholar 

  9. B. Fiedler and P. Poláčik, Complicated dynamics of scalar reaction-diffusion equations with a nonlocal term, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), 167–192.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Fischer, Zentrumsmannigfaltigkeiten bei elliptischen Differentialgleichungen, Math. Nachr. 115 (1984), 137–157.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. K. Hale, Flows on centre manifolds for scalar functional differential equations, Proc. Roy. Soc. Edinburgh Sect. A 101 (1985), 193–201.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. K. Hale, Local flows for functional differential equations, Contemp. Math. 56 (1986), 185–192.

    Article  MathSciNet  Google Scholar 

  13. J. K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys Monographs 25, Amer.Math.Soc. Providence RI 1988.

    MATH  Google Scholar 

  14. J. K. Hale and G. Raugel, Convergence in gradient-like systems with applications to PDE, to appear in Z. Angli. Math. Phys..

    Google Scholar 

  15. R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65–222.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Haraux and P. Poláčik, Convergence to positive equilibrium for some nonlinear evolution equations in a ball, Acta Math. Univ. Comenian. 61 (1992), 129–141.

    MathSciNet  MATH  Google Scholar 

  17. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. 840, Springer-Verlag, Berlin-Heidelberg-New York, 1981.

    MATH  Google Scholar 

  18. D. Henry, Perturbation of the boundary for boundary-value problems of partial differential equations, preprint.

    Google Scholar 

  19. P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Res. Notes Math. Ser. 247, Longman, Harlow, 1991.

    MATH  Google Scholar 

  20. P. L. Lions, Structure of steady state solutions and asymptotic behaviour of semilinear heat equations, J. Differential Equations 53 (1984) 362–386.

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Matano, Convergence of solutions of one-dimensional semilinear parabolic equations, J. Math Kyoto Univ. 18 (1978), 221–227.

    MathSciNet  MATH  Google Scholar 

  22. H. Matano, Asymptotic behavior of solutions of semilinear heat equations on S 1, in Nonlinear Diffusion Equations and their Equilibrium States, (W.-M. Ni, L. A. Peletier, J. Serrin, eds.), Springer-Verlag, Berlin-Heidelberg-New York, 1988, 141–162.

    Google Scholar 

  23. A. Mielke, A reduction principle for nonautonomous systems in infinite-dimensional spaces, J. Differential Equations 65 (1986), 66–88.

    Google Scholar 

  24. J. Moser, A rapidly convergent iteration method and nonlinear partial differential equations, Ann. Scuola Norm. Sup. Pisa (3) 20 (1966), 265–315.

    MathSciNet  MATH  Google Scholar 

  25. J. Palis and W. de Melo, Geometric Theory of Dynamical Systems, Springer-Verlag, New York, 1982.

    Book  MATH  Google Scholar 

  26. P. Poláčik, Complicated dynamics in scalar semilinear parabolic equations in higher space dimension, J. Differential Equations 89 (1991), 244–271.

    Article  MathSciNet  MATH  Google Scholar 

  27. P. Poláčik, Imbedding of any vector field in a scalar semilinear parabolic equation, Proc. Amer. Math. Soc. 115 (1992), 1001–1008.

    MathSciNet  MATH  Google Scholar 

  28. P. Poláčik, Realization of any finite jet in scalar semilinear equation on the ball in M3, Ann. Scuola Norm. Sup. Pisa (4) 18 (1991), 83–102.

    MATH  Google Scholar 

  29. P. Poláčik, High-dimensional ω-limit sets and chaos in scalar parabolic equations, to appear in J. Differential Equations.

    Google Scholar 

  30. P. Poláčik, Realization of the dynamics of ODEs in scalar parabolic PDEs, to appear in Proc. EQUADIFF 8 (Bratislava 1993).

    Google Scholar 

  31. P. Poláčik, Transversal and nontransversal intersections of stable and unstable manifolds in reaction diffusion equations on symmetric domains, to appear in Differential Integral Equations.

    Google Scholar 

  32. P. Poláčik, Convergence in strongly monotone flows defined by semilinear parabolic equations, J. Differential Equations 79 (1989), 89–110.

    Article  MathSciNet  MATH  Google Scholar 

  33. P. Poláčik and K. P. Rybakowski, Imbedding vector fields in scalar parabolic Dirichlet BVPs, to appear in Ann. Scuola Norm. Sup. Pisa.

    Google Scholar 

  34. P. Poláčik and K. P. Rybakowski, Nonconvergent bounded trajectories in semilinear heat equations, to appear in J. Differential Equations.

    Google Scholar 

  35. P. Quittner, Singular sets and number of solutions of nonlinear boundary value problem, Comment. Math. Univ. Carolin. 24 (1983), 371–385.

    MathSciNet  MATH  Google Scholar 

  36. K. P. Rybakowski, An abstract approach to smoothness of invariant manifolds, Appl. Anal. 49 (1993), 119–150.

    Article  MathSciNet  MATH  Google Scholar 

  37. K. P. Rybakowski, Realization of arbitrary vector fields on center manifolds of parabolic Dirichlet BVPs, to appear in J. Differential Equations.

    Google Scholar 

  38. K. P. Rybakowski, Realization of arbitrary vector fields on invariant manifolds of delay equations, to appear in J. Differential Equations.

    Google Scholar 

  39. B. Sandstede and B. Fiedler, Dynamics of periodically forced parabolic equations on the circle, preprint.

    Google Scholar 

  40. J. T. Schwartz, Non-Linear Functional Analysis, Gordon and Breach, New York, 1969.

    Google Scholar 

  41. L. Simon, Asymptotics of a class of nonlinear evolution equations, with application to geometric problems, Annals of Math. 118 (1983), 525–571.

    Article  MATH  Google Scholar 

  42. H. L. Smith and H. R. Thieme, Convergence of strongly order-preserving semiflows, SIAM J. Math. Anal. 22 (1991), 1081–1101.

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Vanderbauwhede and G. Iooss, Center manifold theory in infinite dimensions, Dynam. Report. (N. S.) 1, (C.K.R.T. Jones, U. Kirchgraber, H. O. Walther, eds.), Springer-Verlag, Berlin-Heidelberg-New York, 1992, 125–163.

    Google Scholar 

  44. E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems, I, Comm. Pure Appl. Math. 28 (1975), 91–140.

    Article  MathSciNet  MATH  Google Scholar 

  45. T. I. Zelenyak, Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable, J. Differential Equations 4 (1968), 17–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rybakowski, K.P. (1995). The center manifold technique and complex dynamics of parabolic equations. In: Granas, A., Frigon, M., Sabidussi, G. (eds) Topological Methods in Differential Equations and Inclusions. NATO ASI Series, vol 472. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0339-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0339-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4150-8

  • Online ISBN: 978-94-011-0339-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics