Skip to main content

Some applications of the topological degree to stability theory

  • Chapter
Topological Methods in Differential Equations and Inclusions

Part of the book series: NATO ASI Series ((ASIC,volume 472))

Abstract

These notes are devoted to showing that the topological degree is a useful tool in the study of the properties of stability of periodic solutions of a scalar, time-dependent differential equation of Newtons type. Two different situations are considered depending on whether the equation has damping or not. When there is linear friction the asymptotic stability of a periodic solution can be characterized in terms of degree. When there is no friction the equation has a hamiltonian structure and some connections between Lyapunov stability and degree are discussed. These results are applied in two different directions: to prove that some classical methods in the theory of existence lead to instability (minimization of the action functional, upper and lower solutions) and to study the stability of the solutions of a concrete class of equations (equations of pendulum-type).

The general results are presented in an abstract setting also applicable to other two-dimensional periodic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amann, H., A note on degree theory for gradient mappings, Proc. Amer. Math. Soc. 85 (1982), 591–595.

    Article  MathSciNet  MATH  Google Scholar 

  2. Amine, Z., Ortega, R., Existence of asymptotically stable periodic solutions of a forced equation, Nonlinear Anal. 22 (1994), 993–1003.

    Article  MathSciNet  MATH  Google Scholar 

  3. Amine, Z., Ortega, R., A periodic prey-predator problem, J. Math. Anal. Appl. 185 (1994), 477–489.

    Article  MathSciNet  MATH  Google Scholar 

  4. Arrowsmith, D.K., Place, CM., An Introduction to Dynamical Systems, Cambridge Univ. Press, Cambridge, 1990.

    MATH  Google Scholar 

  5. Bates, P.W., Reduction theorems for a class of semilinear equations at resonance, Proc. Amer. Math. Soc. 84 (1982), 73–78.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernfeld, S., Lakshmikamthan, V., An Introduction to Nonlinear Boundary Value Problems, Academic Press, New York, 1974.

    MATH  Google Scholar 

  7. Brown, M., A new proof of Brouwers lemma on translation arcs, Houston Math. J. 10 (1984), 455–469.

    Google Scholar 

  8. Browder, F.E., On a generalization of the Schauder fixed point theorem, Duke Math. J. 26 (1959), 291-303.

    Article  MathSciNet  MATH  Google Scholar 

  9. Castro, A., Periodic solutions of the forced pendulum equation, in: Differential Equations (S. Ahmad, M. Keener, A. Lazer, eds.), Academic Press, New York, 1980.

    Google Scholar 

  10. Cesari, L., Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, Springer-Verlag, Berlin, 1971.

    Book  MATH  Google Scholar 

  11. Cronin, J., Fixed Points and Topological Degree in Nonlinear Analysis, American Mathematical Society, Providence RI, 1964.

    MATH  Google Scholar 

  12. Chow, S., Hale, J., Methods of Bifurcation Theory, Springer-Verlag, New York, 1982.

    Book  MATH  Google Scholar 

  13. Dancer, E. N., Upper and lower stability and index theory for positive mappings and aplications, Nonlinear Anal 17 (1991), 205–217.

    Article  MathSciNet  MATH  Google Scholar 

  14. Dancer, E. N., Ortega, R., The index of Lyapunov stable fixed points in two dimensions, J. Dynamics Differential Equations 6 (1994).

    Google Scholar 

  15. Erie, D., Stable equilibria and vector field index, Topology Appl. 49 (1993), 231–235.

    Article  MathSciNet  Google Scholar 

  16. Fournier, G., Mawhin, J., On periodic solutions of forced pendulum-like equations, J. Differential Equations 60 (1985), 381–395.

    Article  MathSciNet  MATH  Google Scholar 

  17. Gaines, R.E., Mawhin, J., Coincidence Degree and Nonlinear Differential Equations, Lecture Notes in Math. 586, Springer-Verlag, Berlin, 1977.

    MATH  Google Scholar 

  18. Henry, D., Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, New York, 1981.

    MATH  Google Scholar 

  19. Ioos, G., Bifurcation of Maps and Applications, North-Holland, New York, 1979.

    Google Scholar 

  20. Kannan, R., Ortega, R., An asymptotic result in forced oscillations of pendulum-type equations, Appl Anal 22 (1986), 45–53.

    Article  MathSciNet  MATH  Google Scholar 

  21. Kolesov, J.S., Periodic solutions of quasilinear parabolic equations of second order, Trans. Moscow Math. Soc. 21 (1970), 114–146.

    MathSciNet  Google Scholar 

  22. Krasnoselskii, M.A., The Operator of Translation Along the Trajectories of Differential Equations, Transl. Math. Monographs 19, American Mathematical Society, Providence RI, 1968.

    Google Scholar 

  23. Krasnoselskii, M., Perov, A., Poloskiy, A., Zabreiko, P., Plane Vector Fields, Academic Press, New York, 1966.

    Google Scholar 

  24. Krasnoselskii, M., Zabreiko, P.P., Geometrical Methods of Nonlinear Analysis, Springer-Verlag, Berlin, 1984.

    Book  Google Scholar 

  25. Levi-Civita, T., Sopra alcuni criteri di instabilita, Annali di Matematica 5 (1901), 221–307.

    Article  Google Scholar 

  26. Levinson, N., Transformation theory of non-linear differential equations of the second order, Ann. of Math. 45 (1944) 723–737;

    Article  MathSciNet  MATH  Google Scholar 

  27. Levinson, N., Transformation theory of non-linear differential equations of the second order, Ann. of Math. 49 (1948), 738.

    Article  MathSciNet  Google Scholar 

  28. Lloyd, N.G., Degree Theory, Cambridge Univ. Press, Cambridge, 1978.

    MATH  Google Scholar 

  29. Magnus, W., Winkler, S., Hills Equation, Dover, New York, 1979.

    Google Scholar 

  30. Martinez-Amores, P., Mawhin, J., Ortega, R., Willem, M., Generic results for the existence of nondegenerate periodic solutions of some differential systems with periodic nonlinearities, J. Differential Equations 91 (1991), 138–148.

    Article  MathSciNet  MATH  Google Scholar 

  31. Marsden, J.E., McCracken, M., The Hopf Bifurcation and its Applications, Springer-Verlag, Berlin, 1976.

    Book  MATH  Google Scholar 

  32. Massera, J.L., The number of subharmonic solutions of non-linear differential equations of the second order, Ann. of Math. 50 (1949), 118–126.

    Article  MathSciNet  MATH  Google Scholar 

  33. Mawhin, J., Equations fonctionnelles non lineaires et solutions periodiques, in: Equadiff 70, Centre de Recherches Physiques, Marseille, 1970.

    Google Scholar 

  34. Mawhin, J. Compacité, monotonie et convexité dans létude de problèmes aux lirnites semilinéaires, Séminaire dAnalyse Moderne, no 19., Univ. de Sherbrooke, 1981.

    Google Scholar 

  35. Mawhin, J., Recent results on periodic solutions of the forced pendulum equation, Rend. 1st. Mat. Univ. Trieste 19 (1987), 119–129.

    MathSciNet  MATH  Google Scholar 

  36. Mawhin, J., The forced pendulum: A paradigm for nonlinear analysis and dynamical systems, Exposition. Math. 6 (1988), 271–287.

    MathSciNet  MATH  Google Scholar 

  37. Mawhin, J., Topological degree and boundary value problems for nonlinear differential equations, in: Topological Methods for Ordinary Differential Equations, Lecture Notes in Math. 1537, Springer-Verlag, Berlin 1993.

    Chapter  Google Scholar 

  38. Ortega, R., Stability and index of periodic solutions of an equation of Duffing type, Boll. Un. Mat. Ital. 3-B (1989), 533–546.

    Google Scholar 

  39. Ortega, R., Stability of a periodic problem of Ambrosetti-Prodi type, Differential Integral Equations 3 (1990), 275–284.

    MathSciNet  MATH  Google Scholar 

  40. Ortega, R., Topological degree and stability of periodic solutions for certain differential equations, J. London Math. Soc. 42 (1990), 505–516.

    Article  MathSciNet  MATH  Google Scholar 

  41. Ortega, R., A criterion for asymptotic stability based on topological degree, in: Proc. First World Congress of Nonlinear Analysts, Tampa, 1992.

    Google Scholar 

  42. Ortega, R., The twist coefficient of periodic solutions of a time-dependent Newtons equation, J. Dynamics Differential Equations 4 (1992), 651–655.

    Article  MATH  Google Scholar 

  43. Ortega, R., The stability of the equilibrium of a nonlinear Hills equation, SIAM J. Math. Anal. 25 (1994), 1393–1401.

    Article  MathSciNet  MATH  Google Scholar 

  44. Protter M., Weinberger H., Maximum Principles in Differential Equations, Prentice-Hall, Englewood Cliffs NJ, 1967.

    Google Scholar 

  45. Rothe, E.H., Introduction to Various Aspects of Degree Theory in Banach Spaces, Math. Surveys 23, American Mathematical Society, Providence RI, 1986.

    MATH  Google Scholar 

  46. Riissmann, H., Uber die Normalform analytischer Hamiltonscher Differentialgleichungen in der Nahe einer Gleichgewichtslosung, Math. Ann. 169 (1967), 55–72.

    Article  MathSciNet  Google Scholar 

  47. Seifert, G., The asymptotic behavior of solutions of pendulum-type equations, Ann. of Math. 69 (1959), 75–87.

    Article  MathSciNet  MATH  Google Scholar 

  48. Shub, M., Sullivan, D., A remark on the Lefschetz fixed point formula for differentiable maps, Topology 13 (1974), 189–191.

    Article  MathSciNet  MATH  Google Scholar 

  49. Siegel, C.L., Moser, J., Lectures on Celestial Mechanics, Springer-Verlag, Berlin, 1971.

    Book  MATH  Google Scholar 

  50. Simo, C, Stability of degenerate fixed points of analytic area preserving maps, Asterisque 9899 (1982), 184–194.

    Google Scholar 

  51. Simon, C, A bound for fixed point index of an area-preserving map with applications to mechanics, Invent. Math. 26 (1976), 187–200;

    Article  Google Scholar 

  52. Simon, C, A bound for fixed point index of an area-preserving map with applications to mechanics, Invent. Math. 32 (1976), 101.

    Article  MathSciNet  MATH  Google Scholar 

  53. Smith, R.A., Masseras convergence theorem for periodic nonlinear differential equations, J. Math. Anal. Appl. 120 (1986), 679–708.

    Article  MathSciNet  MATH  Google Scholar 

  54. Tarantello, G., On the number of solutions for the forced pendulum equation, J. Differential Equations 80 (1989), 79–93.

    Article  MathSciNet  MATH  Google Scholar 

  55. Yorke, J.A., Periods of periodic solutions and the Lipschitz constant, Proc. Amer. Math. Soc. 22 (1969), 509–512.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ortega, R. (1995). Some applications of the topological degree to stability theory. In: Granas, A., Frigon, M., Sabidussi, G. (eds) Topological Methods in Differential Equations and Inclusions. NATO ASI Series, vol 472. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0339-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0339-8_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4150-8

  • Online ISBN: 978-94-011-0339-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics