Skip to main content

Existence principles for differential equations and systems of equations

  • Chapter
Topological Methods in Differential Equations and Inclusions

Part of the book series: NATO ASI Series ((ASIC,volume 472))

Abstract

These lectures cover basic existence and sometimes uniqueness principles for systems of ordinary differential equations and for equations in Banach spaces. The existence principles are established by means of topological methods based on nonlinear alternatives for compact maps and for contractive maps. The initial analysis treats both classical and Carathéodory problems on compact intervals simultaneously and in a classical setting by recasting the boundary value problem as an equivalent integro-differential equation. Later problems with more general singularities and/or unbounded intervals are treated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey, P.B., Shampine, L.F. and Waltman, P.E., Nonlinear Two Point Boundary Value Problems, Academic Press, New York, 1968.

    MATH  Google Scholar 

  2. Barbu, V., Nonlinear Semigroups and Differential Equations in Banach Spaces, Nord-hoff, Groningen, 1981.

    Google Scholar 

  3. Baxley, J.V., Existence and uniqueness for nonlinear boundary value problems, J. Math. Anal Appl. 147 (1990), 122–133.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bebernes, J.W., A simple alternative problem for finding periodic solutions of second order ordinary differential equations, Proc. Amer. Math. Soc. 42 (1974), 121–127.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bebernes, J.W. and Jackson, L.K., Infinite interval problems for y″ = f(t,y), Duke Math. J. 34 (1967), 37–47.

    Article  MathSciNet  Google Scholar 

  6. Bernstein, S., Sur le équations du calcul des variations, Ann. Sci. Ecole Norm. Sup. 29 (1912), 431–485.

    MathSciNet  MATH  Google Scholar 

  7. Bielecki, A., Une remarque sur la méthode de Banach-Caccioppoli-Tikhonov, Bull. Acad. Polon. Sci. 4 (1956), 261–268.

    MathSciNet  MATH  Google Scholar 

  8. Bobisud, L.E., Calvert, J.E. and Royalty, W.D., Some existence results for singular boundary value problems, Differential Integral Equations 6 (1993), 553–571.

    MathSciNet  MATH  Google Scholar 

  9. Bobisud, L.E., O’Regan, D. and Royalty, W.D., Solvability of some nonlinear boundary value problems, Nonlinear Anal. 12 (1988), 855–869.

    Article  MathSciNet  MATH  Google Scholar 

  10. Callegari, A. and Nachman, A., Some singular nonlinear differential equations arising in boundary layer theory, J. Math. Anal. Appl. 64 (1978), 96–105.

    Article  MathSciNet  MATH  Google Scholar 

  11. Callegari, A. and Nachman, A., A nonlinear singular boundary value problem in the theory of pseudoplastic fluids, SIAM J. Appl. Math. 38 (1980), 275–281.

    Article  MathSciNet  MATH  Google Scholar 

  12. Carathéodory, C., Vorlesungen üher reelle Funktionen, Dover, New York, 1948.

    Google Scholar 

  13. Chan, C.Y. and Hon, Y.C., Computational methods for generalised Emden Fowler models of neutral atoms, Quart. Appl. Math. 46 (1988), 711–726.

    MathSciNet  MATH  Google Scholar 

  14. Coddington, E. and Levinson, N., The theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.

    Google Scholar 

  15. Dugundji, J. and Granas, A., Fixed Point Theory, Monografie Matematyczne, PWN, Warsaw, 1982.

    MATH  Google Scholar 

  16. Dunninger, D.R. and Kurtz, J.C., Existence of solutions for some nonlinear singular boundary value problems, J. Math. Anal. Appl 115 (1986), 396–405.

    Article  MathSciNet  Google Scholar 

  17. Fink, A.M., Gatica, J.A., Hernandez, G.E. and Waltman, P., Approximation of solutions of singular second order boundary value problems, SIAM J. Math. Anal. 22 (1991), 440–462.

    Article  MathSciNet  MATH  Google Scholar 

  18. Frigon, M., Sur l’existence de solutions pour l’équation différentielle u'(z) = f(z,u(z)) dans un domaine complexe, C. R. Acad. Sci. Paris 310 (1990), 819–822.

    MathSciNet  MATH  Google Scholar 

  19. Frigon, M., Application de la théorie de la transversalité topologies à des problèmes non lineaires pour des équations différentielles ordinaires, Dissertationes Math.(Rozprawy Mat.) 296 (1990), 1–79.

    MathSciNet  Google Scholar 

  20. Frigon, M., Granas, A. and Guennoun, Z., Sur l’intervalle maximal d’existence de solutions pour des inclusions différentielles, C R. Acad. Sci. Paris 306 (1988), 747–750.

    MathSciNet  MATH  Google Scholar 

  21. Frigon, M. and Lee, J.W., Existence principles for Carathéodory differential equations in Banach spaces, Topoi. Methods Nonlinear Anal. 1 (1993), 95–111.

    MathSciNet  MATH  Google Scholar 

  22. Furi, M. and Pera, P., A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals, Ann. Polon. Math. 47 (1987), 331–346.

    MathSciNet  MATH  Google Scholar 

  23. Gaines, R.E. and Mawhin, J., Coincidence Degree and Nonlinear Differential Equations, Lecture notes in Math. 568, Springer-Verlag, New York, 1977.

    MATH  Google Scholar 

  24. Gatica, J.A., Oliker, V. and Waltman, P., Singular nonlinear boundary value problems for second order ordinary differential equations, J. Differential Equations 79 (1989), 62–78.

    Article  MathSciNet  MATH  Google Scholar 

  25. Granas, A., Continuation method for contractive maps, to appear.

    Google Scholar 

  26. Granas, A. and Guennoun, Z., Quelques résultats dans la théorie de Bernstein-Carathéodory de l’équation y″ = f(t,y,y′), C. R. Acad. Sci. Paris 306 (1988), 703–706.

    MathSciNet  MATH  Google Scholar 

  27. Granas, A., Guenther, R.B. and Lee, W.J., Nonlinear boundary value problems for ordinary differential equations, Dissertationes Math. (Rozparwy Mat.) 244, Warsaw, 1985.

    Google Scholar 

  28. Granas, A., Guenther, R.B. and Lee, J.W., Existence principles for classical and Carathéodory solutions of nonlinear systems and applications, in: Differential Equations and Applications (Columbus, OH, 1988) (A. R. Aftabizadeh, ed.) vol. 1, Ohio Univ. Press, Athens, OH, 1989, 353–364.

    Google Scholar 

  29. Granas, A., Guenther, R.B. and Lee, J.W., Some general existence principles in the Carathéodory theory of nonlinear differential systems, J. Math. Pures Appl. 70 (1991), 153-196.

    MathSciNet  MATH  Google Scholar 

  30. Granas, A., Guenther, R.B., Lee, J.W. and O’Regan, D., Boundary value problems on infinite intervals and semiconductor devices, J. Math. Anal. Appl. 116 (1986), 335-348.

    Article  MathSciNet  MATH  Google Scholar 

  31. Hartman, P., Ordinary Differential Equations, Wiley, New York, 1964.

    MATH  Google Scholar 

  32. Lakshmikantham, V. and Leela, S., Nonlinear differential equations in abstract spaces, Pergamon Press, New York, 1981.

    MATH  Google Scholar 

  33. Lasota, A. and Yorke, Y.A., Existence of solutions of two point boundary value problems for nonlinear systems, J. Differential Equations 11 (1972), 509–518.

    Article  MathSciNet  MATH  Google Scholar 

  34. Lee, J.W. and O’Regan, D., Topological transversality: applications to initial value problems, Ann. Polon. Math. 48 (1988), 31–36.

    MathSciNet  Google Scholar 

  35. Lee, J.W. and O’Regan, D., Existence results for differential delay equations II, Nonlinear Anal. 17 (1991), 683–702.

    Article  MathSciNet  MATH  Google Scholar 

  36. Lee, J.W. and O’Regan, D., Existence results for differential equations in Banach spaces, Comment. Math. Univ. Carolin. 34 (1993), 239–251.

    MathSciNet  MATH  Google Scholar 

  37. Lindelöf, E., Sur l’application des méthodes d’approximations successives à l’étude des intégrates réelles des équations différentielles ordinaires, J. Math. Pures Appl. (4) 10 (1894), 117–128.

    Google Scholar 

  38. Liouville, J., Sur le dévelopement des fonctions ou parties de fontions en séries, etc Second Mémoire, J. Math. Pures Appl. (1) 2 (1837), 16–35.

    Google Scholar 

  39. Luning, CD. and Perry, W.L., An iterative technique for solutions of the Thomas Fermi equation utilizing a nonlinear eigenvalue problem, Quart. Appl. Math. 35 (1977), 257–268.

    MathSciNet  MATH  Google Scholar 

  40. Luning, CD. and Perry, W.L., Positive solutions of negative exponent generalized Emden-Fowler boundary value problems, SIAM J. Math. Anal. 12 (1981), 874–879.

    Article  MathSciNet  MATH  Google Scholar 

  41. Luning, CD. and Perry, W.L., Iterative solutions of negative exponent Emden Fowler problems, Internat. J. Math. Math. Sci. 13 (1990), 159-164.

    Article  MathSciNet  MATH  Google Scholar 

  42. Martin, R.H., Nonlinear Operators and Differential Equations in Banach Spaces, Wiley, New York, 1976.

    MATH  Google Scholar 

  43. Mawhin, J., Functional analysis and boundary value problems, MAA Studies in Math. 14 (1977), 128–168.

    Google Scholar 

  44. Mawhin, J., Topological degree methods in nonlinear boundary value problems, CBMS Regional Conf. Series in Math. 40, American Mathematical Society, Providence RI, 1979.

    MATH  Google Scholar 

  45. Na, T.Y., Computational Methods in Engineering Boundary Value Problems, Academic Press, New York, 1979.

    MATH  Google Scholar 

  46. O’Regan, D., Ordinary differential equations in the complex domain via topological trans vers ality, J. Differential Equations 67 (1987), 111–121.

    Article  MathSciNet  MATH  Google Scholar 

  47. O’Regan, D., Positive solutions to singular boundary value problems with at most linear growth, Appl. Anal. 49 (1993), 171–196.

    Article  MathSciNet  MATH  Google Scholar 

  48. O’Regan, D., Theory of Singular Boundary Value Problems, World Scientific, Singapore, 1994.

    Book  MATH  Google Scholar 

  49. Peano, G., Démonstation de l’intégrabilité des équations différentielles ordinaires, Math. Ann. 37 (1890), 182–228.

    Article  MathSciNet  MATH  Google Scholar 

  50. Picard, E., Mémoire sur la théorie des équations aux derivées partielles et la méthode des approximations successives, J. Math. Pures Appl. (4) 6 (1890), 145–210.

    Google Scholar 

  51. Picard, E., Sur l’application des méthodes d’approximations successives à l’étude de certaines équations differentielles ordinaires, J. Math. Pures Appl. (4) 9 (1893), 217–271.

    Google Scholar 

  52. Poincaré, H., Sur certaines solutions particulières du problème des trois corps, Bull. Astronom. 1 (1884), 65–74.

    Google Scholar 

  53. Poincaré, H., Sur un théorème de géométrie, Rend. Circ. Mat. Palermo 33 (1912), 357–407.

    Article  Google Scholar 

  54. Schmitt, K. and Thompson, R., Boundary value problems for infinite systems of second order differential equations, J. Differential Equations 18 (1975), 277–295.

    Article  MathSciNet  MATH  Google Scholar 

  55. Taliaferro, S., A nonlinear singular boundary value problem, J. Nonlinear Anal. 3 (1979), 897–904.

    Article  MathSciNet  MATH  Google Scholar 

  56. Wang, J. and Jiang, J., The existence of positive solutions to a singular nonlinear boundary value problem, J. Math. Anal. Appl. 176 (1993), 322–329.

    Article  MathSciNet  MATH  Google Scholar 

  57. Wintner, A., The nonlocal existence problem for ordinary differential equations, Amer. J. Math. 67 (1945), 277–284.

    Article  MathSciNet  MATH  Google Scholar 

  58. Yosida, K., Functional Analysis, Springer-Verlag, Berlin, 1980.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lee, J.W., O’Regan, D. (1995). Existence principles for differential equations and systems of equations. In: Granas, A., Frigon, M., Sabidussi, G. (eds) Topological Methods in Differential Equations and Inclusions. NATO ASI Series, vol 472. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0339-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0339-8_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4150-8

  • Online ISBN: 978-94-011-0339-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics