Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 297))

Abstract

A large number of ceramics can now be produced via the pyrolysis of polymers [1–3]. These new synthetic routes to ceramics are particularly suitable for the production of fibers [4], coatings [5] or reactive amorphous powders for sintering [6]. Two main routes are used to prepare the preceramic polymers, either the sol-gel process to get oxo-polymers, or organo-metallic chemistry to prepare essentially silicon-based polymers such as polysilanes, polycarbosilanes or polysilazanes. Depending on the pyrolysis atmosphere, oxo-polymers can be transformed into oxides, but also into oxycarbides or oxynitrides, while polysilanes, polycarbosilanes and polysilazanes can be converted into silicon carbide, silicon nitride or silicon carbonitride.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lipowitz, J. (1991) Bull Am. Ceram. Soc. 70, 1888–1894

    CAS  Google Scholar 

  2. Peuckert, M.; Vaahs, T. and Brück, M. (1990) Advanced Materials 2, 398–404.

    Article  CAS  Google Scholar 

  3. Laine, R.M. and Babonneau, F. (1993) Chem. Mater. 5, 260–279.

    Article  CAS  Google Scholar 

  4. Yajima, S. (1985) in W. WAtt and B.V. Perov (eds), Handbook of Composites, Vol.1 - Strong fibers, Elsevier Science Publishers, pp. 201–237.

    Google Scholar 

  5. Fischer, H.E.; Larkin, D.J. ;Interrante, L.V. (1991) Mater. Res. Soc. Bull., XVI, 59.

    Google Scholar 

  6. Riedel, R.; Seher, M. and Becker, G. (1988) J. Europ. Ceram. Soc. 5, 113.

    Article  Google Scholar 

  7. Hatfield, G.R. and Carduner, K.R. (1989) J. Mater. Sei. 24,4209–4219.

    Article  CAS  Google Scholar 

  8. Homeny, J. and Risbud, S.H. (1985) Mat. Lett., 3 ,432.

    Article  CAS  Google Scholar 

  9. Homeny, J.; Nebon, G.G. and Risbud, S.H. (1988) J. Am. Ceram. Soc., 71, 386.

    Article  CAS  Google Scholar 

  10. Chi, F.K.; (1983)Ceram. Eng. Sei. Proc., 4,704.

    Article  CAS  Google Scholar 

  11. White, D.A.; Oleff, S.M.; Boyer, R.D.; Budinger, P.A.; and Fox, J.R. (1987) Adv. Ceram. Mater., 2,45.

    CAS  Google Scholar 

  12. White, D.A.; Oleff, S.M. and Fox, J.R.; (1987) Adv. Ceram. Mater., 2 , 53.

    CAS  Google Scholar 

  13. Babonneau, F.; Thorne, K. and Mackenzie, J.D. (1989) Chem. Mater., 1, 554.

    Article  CAS  Google Scholar 

  14. Zhang, H. and Pantano, C.G. (1990) J. Am. Ceram. Soc. 73,958.

    Article  CAS  Google Scholar 

  15. Kamiya, K.; Yoko,T.; Tanaka, K. and Takeuchi, M. (1990) J. Non-Cryst. Solids., 121, 182.

    Article  CAS  Google Scholar 

  16. Laine, R.M.; Rahn, J.A.; Youngdahl, K.A.; Babonneau, F.; Hoppe, M.L.; Zhang, Z.F. and Harrod, J.F. (1990)Chem. Mater., 2,464.

    Article  CAS  Google Scholar 

  17. Hurwitz, F.I.; Farmer, S.C.; Terepka, F.M. and Leonhardt.T.A. (1991) J. Mat. science., 26, 1247.

    Article  CAS  Google Scholar 

  18. Renlund, G.; Prochazka, S. and Doremus, R.H. (1991) J. Mat. Res., 8,2723.

    Article  Google Scholar 

  19. Renlund, G.; Prochazka, S. and Doremus, R.H. (1991) J. Mater. Res 8,2716.

    Article  Google Scholar 

  20. Babonneau, F.; Bois, L. and Livage, J. (1992) J. Non-Cryst. Solids,147 & 148, 280.

    Article  Google Scholar 

  21. Burns, G.T.; Taylor, R.B.; Xu, Y.; Zangvil, A. and Zank, G.A. (1992)Chem. Mater., 4, 1313.

    Article  CAS  Google Scholar 

  22. Belot, V.; Corriu, R.; Leclercq, D.; Mutin, P.H.; and Vioux, A. (1992) J. Non- Cryst. Solids 147 &148, 52.

    Article  Google Scholar 

  23. Belot, V.; Corriu, R.; Leclercq, D.; Mutin and P.H.; Vioux, A. (1992) J. Non-Cryst. Solids., 144, 287.

    Article  CAS  Google Scholar 

  24. Singh, A.K.and Pantano, C.G. (1992) Mat. Res. Soc. Symp. Proc., 271, 795.

    Article  CAS  Google Scholar 

  25. Babonneau, F.; Soraru, G.D.; D’Andrea, G.; Dire, S. and Bois, L. (1992) Mat. Res. Soc. Symp. Proc., 271, 789.

    Article  CAS  Google Scholar 

  26. Bois. L.; Maquet, J.; Babonneau, F.; Mutin, H. and Bahloul D. (1994) Chem. Mater., 6, 796–802.

    Article  CAS  Google Scholar 

  27. Zhang, H. and Pantano, C.G. (1991) In Uhlmann, D.R.; Ulrich, D.R.(eds ),Ultrastructure Processing of Advanced Materials , John Wiley & Sons, New York, pp. 223.

    Google Scholar 

  28. Renlund, G.M. (1990) French Patent 90 06453.

    Google Scholar 

  29. From Massiot, D.; CRPHT (CNRS, Orleans, France).

    Google Scholar 

  30. Schmidt H.; Scholze H. and Kaiser A., (1984) J. Non Cry st. Solids, 63, 1.

    Article  CAS  Google Scholar 

  31. Glaser R.H.; Wilkes G.L. and Bronnimann C.E. (1989) J. Non Cryst. Solids, 113, 73.

    Article  CAS  Google Scholar 

  32. Babonneau F. (1994) Polyhedron, 13, 1123–1130.

    Article  CAS  Google Scholar 

  33. Babonneau F.; Bois L.; Livage J. and Dire S., (1993) Mater. Res. Soc. Symp. Ser., 286,239.

    Google Scholar 

  34. Belot, V.; Corriu, R.; Leclercq, D.; Mutin, P.H. and Vioux, A. (1992) J. Polym. Sei., A30,613.

    Google Scholar 

  35. Belot, V.; Corriu, R.; Leclercq, D.; Mutin, P.H. and Vioux, A.; (1990) J. Mat. Sei. Lett. 9, 1052.

    Article  CAS  Google Scholar 

  36. Soraru, G.D.; Babonneau, F. and Mackenzie, J.D. (1988) J. Non-Cryst. Solids, 106, 256.

    Article  CAS  Google Scholar 

  37. Gerardin, C.; Henry, M. and Taulelle, F. (1992) Mat. Res. Soc. Symp. Proc. 271, 111.

    Article  Google Scholar 

  38. Sorarü, G.D.; D’Andrea, G.; Campostrini, R.; Babonneau, F. and Mariotto, G. (in press) J. Am. Ceram. Soc.

    Google Scholar 

  39. Porte, L. and Sartre, A. (1989) J. Mater. Sei., 24,271.

    Article  CAS  Google Scholar 

  40. Mah, T.; Hecht, N.L.; McCullum, D.E.; Hoenigman, J.R.; Kim, H.M.; Katz, A.P. and Lipsitt, H.A. (1984) J. Mat. Sei,, 19,1191.

    Article  CAS  Google Scholar 

  41. Jonhson, S.M.; Brittain, R.D.; Lamoreaux, R.H. and Rowcliffe, D.R (1988) J. Am. Ceram. Soc., 71, C 132

    Google Scholar 

  42. Luthra, K.L. (1986) J. Am. Ceram. Soc., 69, C 231.

    Article  CAS  Google Scholar 

  43. Klinger, N.; Strauss, E.L. and Komarek, K.L. (1966) J. Am. Ceram. Soc., 49, 369.

    Article  CAS  Google Scholar 

  44. Jack K.H. (1976) J. Mater. Sei., 11, 1135–58.

    Article  CAS  Google Scholar 

  45. Dutta S. (1980) Am. Cearm. Soc. Bull., 59,623–34.

    CAS  Google Scholar 

  46. Mitomo, H.; Kuramoto, N. and Inomata Y. (1979) J. Mater. Sei. 14,2309–16.

    Article  CAS  Google Scholar 

  47. Burns G.T. and Chandra G. (1989) J. Am. Ceram. Soc. 72, 333–3337.

    Article  CAS  Google Scholar 

  48. Okamura K., Sato M. and Hasegawa Y. (1987) Ceram. Int. 13,55–61.

    Article  CAS  Google Scholar 

  49. Yajima S.; Iwai T.; Yamamura T.; Okamura K. and Hasegawa Y. (1981) J. Mater. Sei. 16,1349–55.

    Article  CAS  Google Scholar 

  50. Babonneau F. and Sorarü G.D. (1991) J. Eur. Ceram. Soc. 8, 29–34.

    Article  CAS  Google Scholar 

  51. Babonneau F.; Sorarü G.D.; Thorne K.J. and Mackenzie J.D. (1991) J. Am. Ceram. Soc. 74, 1725–28.

    Article  CAS  Google Scholar 

  52. Sorarü G.D.; Ravagni A.; Dal Maschio R.; Carturan G. and Babonneau F. (1992) J. Mater. Res. 7, 1266–1270.

    Article  Google Scholar 

  53. Sorarü G.D.; Ravagni A.; Campostrini R. and Babonneau F. (1991) J Amer. Ceram. Soc. 74, 2220–2223.

    Article  Google Scholar 

  54. Sorarü G.D.; Mercadini M.; Dal Maschio R.; Taulelle F. and Babonneau F. (1993) J. Amer. Ceram. Soc. 76, 2595–2600.

    Article  Google Scholar 

  55. Komarmeni S.; Roy r.; Fyfe C.A. and Kenedy G.J. ( 1985) J. Am. Ceram. Soc. 68, C243–C245.

    Google Scholar 

  56. Babonneau F.; Livage J.; Sorarü G.D. and Carturan G. (1990) New J. Chem. 14, 539–544.

    CAS  Google Scholar 

  57. Dupree R.; Lewis M. H.; Leng-Ward G. and Williams D. S. (1985) J. Mater. Sei., 4, 393–95.

    CAS  Google Scholar 

  58. Smith M.E. (1992)J. Phys Chem. 96, 1444–48.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Babonneau, F. (1995). NMR Characterization of Ceramic Materials Derived from Preceramic Polymers. In: Harrod, J.F., Laine, R.M. (eds) Applications of Organometallic Chemistry in the Preparation and Processing of Advanced Materials. NATO ASI Series, vol 297. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0337-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0337-4_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4149-2

  • Online ISBN: 978-94-011-0337-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics