Skip to main content

Abstract

Ecological as well as economical aspects influence the development of chemical processes. To meet the increasing regulations new heterogeneous catalysts are required, which should improve selectivity and utilize cheaper feedstocks. Zero waste processes are a clear goal of the chemical industries [1]. Most “new” catalysts will be based on gradual improvements of known materials, but there is a demand for new catalysts with properties different from those of the known catalytic materials. Among the “new” catalysts of the past that have successfully replaced traditional catalytic materials, zeolites, bimetallic and bifunctional catalysts might be mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dodgson, I. (1993) Trends and Opportunities with modern Hydrogenation Catalysts in Heterogeneous Catalysis and Fine Chemicals II, Stud, in Surf. Sei. & Catal. 78, Guisnet et al. Eds, Elsevier Science Publ., Amsterdam, 1–20.

    Google Scholar 

  2. Brinker, C.J. and Scherer, G.W. (1990) Sol-Gel Science, Academic Press Inc., Boston.

    Google Scholar 

  3. Ernst, S., Weitkamp, J. (1994) Synthesis of large pore aluminosilicates, Catalysis Today 19, 27–60.

    Article  CAS  Google Scholar 

  4. Notari, B. (1993) Titanium Silicates, Catalysis Today 18, 163–172.

    Article  CAS  Google Scholar 

  5. Cauqui, M.A., Rodríguez-Izquerido, J.M (1992) Application of the sol-gel methods to catalyst preparation, J. Noncryst. Solids. 147&148, 724–738.

    Article  Google Scholar 

  6. Pajonk, G.M. (1991) Aerogel catalysts, Appl. Catal. 72, 217–266.

    Article  CAS  Google Scholar 

  7. Hegedus, L.L., Aris, R, Bell, A.T., Boudart, M., Chen, N. Y., Gates, B.C., Haag, W.O., Somoijai, G.A. and Wei, J. (1987) Catalyst Design, J. Wiley & Sons, New York.

    Google Scholar 

  8. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotte, R.A., Rouquörol, J. and Siemieniewska, T. (1985) Reporting Physisorption Data for Gas/Solid Systems with special Reference to the Determination of Surface Area and Porosity, Pure & Appl. Chem. 57, 603–619.

    Article  CAS  Google Scholar 

  9. Brinker, C.J., Smith, D.M., Deshpande, R., Davis, P.M., Hietala, S., Fiye, G.C., Ashley, C.S. and Assink, R.A. (1992) Sol-Gel-processing of controlled pore oxides, Catal. Today 14, 155–163.

    Article  CAS  Google Scholar 

  10. Klein, L.C., Woodman, Yu, C.R. and Pavlik, R. (1992) Microporous oxides by the sol-gel process: synthesis and application, Catal. Today 14,165–173.

    Article  CAS  Google Scholar 

  11. Maier, W.F., Tilgner, I.-C., Wiedorn, M. and Ko. H.-C. (1993) Preparation and Characterization of Microporous Metaloxides, Adv. Mater. 10,730–735.

    Article  Google Scholar 

  12. Maier, W.F. and Schramm, H.O. (1992) Microporous Inorganic Membranes, Better Ceramics through Chemistry V, Mat. Res. Soc. Proc. 271, Pittsburgh, PA, 493–498.

    Google Scholar 

  13. Maier, W.F., Tilgner, I.-C., Wiedom, M., Ko, H.-C., Ziehfreund, A. and Sell. R. (1993) Microporous Inorganic Membranes, Adv. Mater. 10,726–730.

    Article  Google Scholar 

  14. Livage, J. and Sanchez, C. (1992) Sol-gel chemistry, J. Non-Cryst,. Solids 145, 11–19

    Article  CAS  Google Scholar 

  15. Sanchez, C., Livage, J., Henry, M. and Babonneau, F. (1988) Chemical Modification of Alkoxide Precursors, J. Non-Cryst. Solids 100,65–76.

    Article  CAS  Google Scholar 

  16. Kollar, J. (1967) US patent 3 350 422.

    Google Scholar 

  17. Wattimena, F. and Wulff, H.P. (1970) Ger. Offen. 2,015,503.

    Google Scholar 

  18. Liu, Z. and Davis, R. J. (1994) Investigation of the structure of microporous Ti-Si mixed oxides by X-Ray, UV Reflectance, FT Raman and FT-IR Spectroscopies, J. Phys. Chem. 98,1253–1261.

    Article  CAS  Google Scholar 

  19. Carati, A., Darini, E., Clerici, M.G. and Bellussi, G. (1992) European Patent Application EP 492,697.

    Google Scholar 

  20. Guglielmi, M. and Carturan, G., (1988) Precursors for Sol-Gel Preparation, J. Non-Cryst. Solids, 100,16–30.

    Article  CAS  Google Scholar 

  21. Léustic, A., Babonneau, F. and Livage, J. (1989) Structural investigation of the hydrolysis-condensation process of titanium alkoxides Ti(OR)4 modified by acetylacetone. 1. Study of the alkoxide precursor and 2. From the modified precursor to the colloids, Chem. Mater. 1, 240–252

    Article  Google Scholar 

  22. Diré, S., Babonneau, F., Carturan, G. and Livage, J. (1992) Synthesis and characterization of siloxane-titania materials, J. Non-Cryst Solids, 147,62–66.

    Article  Google Scholar 

  23. Doeuf, S., Hemy, M., Sanchez, C. and Livage, J. (1987) Hydrolysis of titanium alkoxides: modification of the molecular precursor by acetic acid, J. Non-Cryst. Solids, 89,206–216.

    Article  Google Scholar 

  24. Mark, M.F. and Maier, W.F. (1994) Active Surface Carbon -A Reactive Intermediate in the Production of Synthesis Gas from Methane and Carbon Dioxide, Angew. Chem. Int. Ed. Engl. 33,1659–1662.

    Article  Google Scholar 

  25. Schmidt, H and Seiferling, B. (1986) Chemistry and Applications of Inorganic-Organic Polymers, in Brinker C.J., Clark, D.E. and Ulrich, D.R. (eds), Better Ceramics through Chemistry //, MRS vol 73,739–750.

    Google Scholar 

  26. Schultz, P.G. (1989) Catalytic Antibodies, Angew. Chem. Int. Ed. 28, 1283– 1295

    Article  Google Scholar 

  27. Lerner, R.A., Benkovic, S.J. and Schultz, P.G. (1991) At the Crossroad of Chemistry and Immunology: Catalytic Antibodies, Science 252,659–667.

    Article  CAS  Google Scholar 

  28. Shokat, K.M., Koo, M.K., Scalan, T.S., Kochersperger, L., Yonkovich, S., Thaisrivongs, S. and Schultz, P.G. (1990) Catalytic Antibodies: A new Class of Transition State Analogues Used to Elicit Hydrolytic Antibodies, Angew. Chem. Int. Ed. Engl. 29, 1296–1303.

    Article  Google Scholar 

  29. Dickey, F.H (1949) The Preparation of Specific Adsorbents, Proc. Nat. Acad. Sei. 35,227–229

    Article  CAS  Google Scholar 

  30. Dickey, F.H. (1955) Specific Adsorption, J. Phys. Chem. 59, 695–707.

    Article  CAS  Google Scholar 

  31. Curti, R., Colombo, U. (1952) Chromatography of Stereoisomers with “Tailor made” Compounds, J. Am. Chem. Soc. 74,3961.

    Article  CAS  Google Scholar 

  32. Bartels, H., Prijs, B., Erlenmeyer, H. (1966) Über spezifisch adsorbierende Silicagele V, Helvetica 49,1621–1625.

    Article  CAS  Google Scholar 

  33. Morihara, K., Kurihara, S. and Suzuki J. (1988) Footprint Catalysis. I. A New Method for Designing “Tailor-Made” Catalysts with Substrate Specificity: Silica (Alumina) Catalysts for Butanolysis of Benzoic Anhydride, Bull. Chem. Soc. Jpn. 61,3991–3998.

    Article  CAS  Google Scholar 

  34. Morihara, K., Takiguchi, M. and Shimada, T. (1994) Footprint Catalysis. XI. Molecular Footprint Cavities Imprinted with Chiral Amines and Their Chiral Molecular Recognition, Bull. Chem. Soc. Jpn. 67,1078–1084.

    Article  CAS  Google Scholar 

  35. Morihara, K., Kurokawa, M., Kamata, Y., Shimada, T. (1992) Enzyme-like Enantioselective Catalysis over Chiral ‘Molecular Footprint’ Cavities on a Silica (Alumina) Gel Surface, J. Chem. Soc. Chem. Commun. 358–360.

    Google Scholar 

  36. Maier, W.F., Heilmann, J. (1994) Selective Catalysis on Silicon Dioxide with Substrate-Specific Cavities, Angew. Chem. 106,491–493 :Angew. Chem. Int. Ed. Engl. 33, 471-473.

    Article  Google Scholar 

  37. Martens, J.A., Tielen, M., Jacobs, P.A. and Weitkamp, J. (1984) Estimation of the void structure and pore dimensions of molecular sieve zeolites using the hydroconversion of n-decane, Zeolites 4, 98–107.

    Article  CAS  Google Scholar 

  38. Maier, W.F., Martens, J.A., Heilmann, J., Klein, S. and Jacobs, P.A., in preparation.

    Google Scholar 

  39. Schneider, M., Wildberger, M., Maciejewski, M., Duff, D.G., Mallät, T. and Baiker, A. (1994) Preparation, Structural Properties, and Hydrogenation Activity of Highly Porous Palladium-Titania Aerogels, J. Catal. 148,625–638.

    Article  CAS  Google Scholar 

  40. Lopez, T., Herrera, L., Mendez-Vivar, J., Bosch, P., Gömez, R. and Gonzalez, RD. (1992) Support effect in ruthenium sol-gel catalysts on silica and alumina, J. Non-Cryst. Solids 147&148,773–777.

    Article  Google Scholar 

  41. The dispersion was determined by static CO-chemisorption.

    Google Scholar 

  42. Maier, W.F. and Ko, H.-C. (1994), Poison Resistant Hydrogenation with Microporous Catalyst Membranes, in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Maier, W.F. et al. (1995). Sol-Gel Methods for the Production of Novel Catalytic Materials. In: Harrod, J.F., Laine, R.M. (eds) Applications of Organometallic Chemistry in the Preparation and Processing of Advanced Materials. NATO ASI Series, vol 297. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0337-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0337-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4149-2

  • Online ISBN: 978-94-011-0337-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics