Skip to main content

Mangroves and climate change in the Florida and Caribbean region: scenarios and hypotheses

  • Conference paper

Part of the book series: Developments in Hydrobiology ((DIHY,volume 106))

Abstract

The principal scenario concerning the potential effects of climate change on mangrove forest communities revolves around sealevel rise with emphases on coastal abandonment and inland retreat attributable to flooding and saline intrusion. However, at the decade to century scale, changes in precipitation and catchment runoff may be a more significant factor at the regional level. Specifically, for any given sealevel elevation it is hypothesized that reduced rainfall and runoff would necessarily result in higher salinity and greater seawater-sulfate exposure. This would likely be associated with decreased production and increased sediment organic matter decomposition leading to subsidence. In contrast, higher rainfall and runoff would result in reduced salinity and exposure to sulfate, and also increase the delivery of terrigenous nutrients. Consequently, mangrove production would increase and sediment elevations would be maintained. Support for this scenario derives from studies of the high production in saline mangrove impoundments which are depleted in seawater sulfate. This paper also examines other components of climate change, such as UVb, temperature, and storm frequency, and presents a suite of hypotheses and analytical protocols to encourage scientific discussion and testing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed, S. I., 1992. Coping with excess salt in their growth environments:Osmoregulation and other survival strategies deployed by the mangroves. Pak. J. mar. Sci. 1: 73–86.

    Google Scholar 

  • Clough, B. F. & P. M. Attiwill, 1982. Primary productivity of mangroves,pp. 213–222. In B. F. Clough [ed.]. Mangrove Ecosystems of Australia. Australian National University Press, Canberra,302 pp.

    Google Scholar 

  • Briggs, S. V., 1977. Estimates of biomass in a temperate mangrove community. Aust. J. Ecology 2: 369–373.

    Article  Google Scholar 

  • Davis, J. H., 1938a. The role of mangrove vegetation in land building in southern Florida. American Philosopical Society Yearbook: 162–164.

    Google Scholar 

  • Davis, J. H., 1938b. Mangroves, makers of land. Nature Magazine 31:551–553.

    Google Scholar 

  • Davis, J. H., 1940. The ecology and geologic role of mangroves in Florida. Publication Carnegie Institution 517: 303–412.

    Google Scholar 

  • Davis, J. H., 1942. The ecology of the vegetation and topography of the sand keys of Florida. Publication Carnegie Institution 33: 113–195.

    Google Scholar 

  • Davis, J. H., 1943. The natural features of Southern Florida, especially the vegetation, and the everglades. Geological Bulletin Florida 25, 311 pp.

    Google Scholar 

  • Ellision, J. C., 1993. Mangrove retreat with rising sea-level, Bermuda.Estuar. coast, mar. sci 37: 75–87.

    Article  Google Scholar 

  • Ellison, J. C. & D. R. Stoddart, 1991. Mangrove ecosystem collapse during predicted sealevel rise: Holocene analogues and implications J. Coast. Res. 7: 151–165.

    Google Scholar 

  • Gill, A. M. & P. B. Tomlinson, 1971. Studies on the growth of red mangrove (Rhizophora mangle L.) 3. Phenology of the shoot. Biotropica 3: 109–124.

    Article  Google Scholar 

  • Golley, F. B., H. T. Odum & R. F. Wilson, 1962. The structure and metabolism of a Puerto Rican red mangrove forest in May. Ecology 43: 9–19.

    Article  CAS  Google Scholar 

  • Golley, F. B., J. T. McGinnis, R. G. Clements, G. I. Child & M. J. Duever, 1974. Mineral Cycling in a Tropical Moist Forest Ecosystem. Univ. Georgia Press, Athens, 248 pp.

    Google Scholar 

  • Goodwin, T. W., 1965. Chemistry and Biochemistry of Plant Pigments.Academic Press, New York.

    Google Scholar 

  • Hackney, C. T., 1987. Factors affecting accumulation or loss of macroorganic matter in salt marsh sediments. Ecology 68: 1109–1113.

    Article  Google Scholar 

  • Hamilton, L. & S. C. Snedaker (eds), 1984. Handbook for Mangrove Area Management, Environment and Policy Institute, East-West Center, Honolulu, Hawaii, 123 pp.

    Google Scholar 

  • Hillman, W. S., 1967. The physiology of phytochrome. Ann. Rev. Pl. Physiol. 18: 301–324.

    Article  CAS  Google Scholar 

  • Jimenez, J. A., 1988. Dynamics and dispersion patterns of two mangrove populations on the Pacific coast of Costa Rica. Ph.D. Dissertation. Univ. Miami, Coral Gables, 176 pp.

    Google Scholar 

  • Lahmann, E. J., 1988. Effects of different hydrological regimes on the productivity of Rhizophora mangle L. A case study of mosquito control impoundments at Hutchinson Island, Saint Lucie County, Florida. Ph.D. Dissertation. Univ. Miami, Coral Gables, 149 pp.

    Google Scholar 

  • Levitt, J., 1972. Responses of Plants to Environmental Stresses. Academic Press, New York, 607 pp.

    Google Scholar 

  • Lewis, R. R., III, R. G. Gilmore, Jr., D. W. Crewz & W. E. Odum, 1985. Mangrove habitat and fishery resources of Florida: 281– 336. In William Seaman, Jr. (ed.). Florida Aquatic Habitat and Fishery Resources. Florida Chapter, American Fisheries Society, Kissimmee, FL. 543 pp.

    Google Scholar 

  • Lin, Peng, n.d., Element cycle and energy dynamics in three kinds of mangroves of China. Manuscript, 14 pp.

    Google Scholar 

  • Lugo, A. E., M. Sell & S. C. Snedaker, 1976. Mangrove ecosystem analysis, pp. 113–145. In B. C. Patten (ed.). Systems Analysis and Simulation in Ecology, Vol. IV. Academic Press, New York, NY, 593 pp.

    Google Scholar 

  • Maul, G. A. & D. M. Martin, 1993. Sea level rise at Key West, 1846–1992: America’s longest instrument record? Geophysical Research Letters 20: 1955–1958.

    Article  Google Scholar 

  • Morris, J. T., 1991. Effects of nitrogen loading on wetland ecosystems.Ann. Rev. Ecol. and Syst. 22: 257–279.

    Article  Google Scholar 

  • Padgett, D. E., C. T. Hackney & A. A. de la Cruz, 1986. Growth of filamentous fungi into balsa wood panels buring in North Carolina salt marsh sediments. Trans. br. mycol. Soc 87: 155–162.

    Article  Google Scholar 

  • Park, R. A., M. S. Trehan, P. W. Mausel & R. C. Howe, 1989. The effects of sea level rise on U.S. coastal wetlands and lowlands.HRI Report No. 164. OPPE, U.S. Environmental Protection Agency, Washington, D.C.

    Google Scholar 

  • Pool, D. J., S. C. Snedaker & A. E. Lugo, 1977. Structure of mangrove forests in Florida, Puerto Rico, Mexico and Costa Rica. Biotropica 9: 195–212.

    Article  Google Scholar 

  • Rabino, I., L. Mancinelli & K. M. Kuzmanoff, 1977. Photocontrol of anthocyanin synthesis. Plant Physiol. 59: 569–573.

    Article  PubMed  CAS  Google Scholar 

  • Rabinowitz, D., 1978a. Dispersal properties of mangrove propagules.Biotropica 10: 47–57.

    Article  Google Scholar 

  • Rabinowitz, D., 1978b. Mortality and initial propagule size in mangrove seedlings in Panama. J. Ecol. 66: 45–51.

    Article  Google Scholar 

  • Rabinowitz, D., 1978c. Early growth of mangrove seedlings in Panama,and an hypothesis concerning the relationship of dispersal and zonation. J. Biogeogr. 5: 113–133.

    Article  Google Scholar 

  • Snedaker, S. C., 1993. Impact on mangroves, pp. 282–305. In G. A. Maul (ed.) Climate Change in the Intra-Americas Sea.Edward Arnold, Hodder and Stoughton Publishers, Kent, UK., 389 pp.

    Google Scholar 

  • Snedaker, S. C., M. S. Brown, E. J. Lahmann & R. J. Araujo, 1992. Recovery of a mixed-species mangrove forest in south Florida following canopy removal. J. coastal Res. 8: 919–925.

    Google Scholar 

  • Spencer, D. F. & G. G. Ksander, 1990. Influence of temperature, light and nutrient limitation on anthocyanin content of Potamogeton gramineus L. Aquat. Bot 38: 357–367.

    Article  CAS  Google Scholar 

  • Tevini, M., 1993. Effects of enhanced UV-B radiation on terrestrial plants, pp. 125–153. In M. Tevini (ed.) UV-B Radiation and Ozono Depletion: Effects on Humans, Animals, Plants, Microorganisms, and Materials. Lewis Publishers. Boca Raton, FL., 248 pp.

    Google Scholar 

  • Tomlinson, P. B., 1986. The Botany of Mangroves. Cambridge University Press, New York, 413 pp.

    Google Scholar 

  • Wanless, H. R., 1982. Sea level is rising-so what? J. Sed. Petrol. 52: 1051–1054.

    Google Scholar 

  • Watson, J. G., 1928. Mangrove forests of the Malay Peninsula. Malayan Forest Records 6: 125–149.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Yuk-Shan Wong Nora F. Y. Tam

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Snedaker, S.C. (1995). Mangroves and climate change in the Florida and Caribbean region: scenarios and hypotheses. In: Wong, YS., Tam, N.F.Y. (eds) Asia-Pacific Symposium on Mangrove Ecosystems. Developments in Hydrobiology, vol 106. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0289-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0289-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4127-0

  • Online ISBN: 978-94-011-0289-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics