Skip to main content

Amphiphilic interactions of long-chain fatty acylcarnitines with membranes: potential involvement in ischemic injury

  • Chapter
The Carnitine System

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 162))

Abstract

Under physiological conditions, the heart preferentially utilizes fatty acids to meet its energy requirements. Non-esterified free fatty acids (NEFA) in plasma are bound to albumin with only small quantities free in solution, in equilibrium with the albumin-bound NEFA [1]. A significant portion of NEFA utilized by the cardiomyocyte originates from hydrolysis by endothelial surface-bound lipoprotein lipase of triacylglycerols of the circulating lipoproteins [2]. Unbound NEFA transverses the sarcolemma (SL) either passively or facilitated by specific membrane proteins such as SL fatty acid binding protein [3]. Like plasma NEFA, cytosolic unbound NEFA exist in equilibrium with a larger quantity of intracellular NEFA bound to fatty acid binding protein [3]. Metabolism of cytosolic NEFA proceeds initially by thioesterification into fatty acyl-CoA esters catalyzed by acyl-CoA synthetase that is localized predominantly on the outer mitochondrial membrane (Figure 1, normoxia). Due to the limited availability of CoA, most of which is contained in the mitochondrial matrix, the fatty acyl-CoA synthetase activity is substrate dependent. Long chain fatty acyl-CoA cannot pass the inner mitochondrial membrane to become degraded by the β-oxidation. The cytosolic and matrix pools of CoA are also strictly separated and the cytosolic long chain fatty acyl-CoA is first converted to long chain fatty acylcarnitine (LCAC) by carnitine fatty acyltransferase I, localized at the inner surface of the mitochondrial outer membrane [4]. LCAC thus generated is translocated across the mitochondrial inner membrane via the specific acylcarnitine-carni-tine antiporter (translocase) [5]. Inside the mitochondrial matrix the LCAC is transesterified to yield free carnitine and fatty acyl-CoA by carnitine acyltransferase II localized at the inner surface of the mitochondrial inner membrane [3]. Total carnitine content (free and esterified) on each side of the inner mitochondrial membrane remains relatively constant. Complete β-oxidation of fatty acyl-CoA results in the production of acetyl-CoA fragments with concomitant reduction of NAD+ and FAD. Acetyl-CoA enters the citric acid cycle with production of additional NADH and FADH2. The reducing equivalents formed yield ATP in the mitochondrial electron transport chain tightly coupled to the ATP synthetase.

“Altogether, definitive evidence for long chain fatty acylcarnitine as a mediator of impaired contractile function is still lacking, but experimental evidence for arrhythmogenicity of accumulated acylcarnitine seems rather convincing.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Spector AA, Fletcher JE, Ashbrook JD. Analysis of long-chain free fatty acid binding to bovine serum albumin by determination of stepwise equilibrium constants. Biochemistry 1971; 10: 3229–3232.

    Article  PubMed  CAS  Google Scholar 

  2. Stam HCG, Schoonderwoerd K, Breeman W, Hülsmann WC. Effects of hormones, fasting and diabetes on triglyceride lipase activities in rat heart and liver. Horm Metab Res 1984; 16: 293–297.

    Article  PubMed  CAS  Google Scholar 

  3. Van der Vusse GJ, Glatz JFC, Stam HCG, Reneman RS. Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev 1992; 72: 881–935.

    PubMed  Google Scholar 

  4. Murthy MSE, Pande SV. Malonyl-CoA binding site and the overt carnitine palmitoyl-transferase activity reside on the opposite sides of the outer mitochondrial membrane. Proc Natl Acad Sci USA 1987; 84: 378–382.

    Article  PubMed  CAS  Google Scholar 

  5. Wolkowicz PE, Pownall HJ, McMillin-Wood JB. (l-Pyrenbutyryl)carnitine and 1-pyrenebu-tyryl coenzym A: Fluorescent probes for lipid metabolite studies in artificial and natural membranes. Biochemistry 1982; 21: 2990–2996.

    Article  PubMed  CAS  Google Scholar 

  6. Whitmer JT, Idell-Wenger JA, Rovetto MJ, Neely JR. Control of fatty acid metabolism in ischemic and hypoxic hearts. J Biol Chem 1978; 253: 4305–4309.

    PubMed  CAS  Google Scholar 

  7. Oliver MF, Kurien VA, Greenwood TW. Relation between serum-free-fatty-acids and arrhythmias in death after acute myocardial infarction. Lancet 1968; 1: 710–714.

    Article  PubMed  CAS  Google Scholar 

  8. Katz AM, Messineo FC. Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circ Res 1981; 48: 1–16.

    Article  PubMed  CAS  Google Scholar 

  9. Lamers JMJ, Stinis JT, Montfoort A, Hülsmann WC. Modulation of membrane function by lipid intermediates: a possible role in myocardial ischemia. In: Ferrari R, Katz AM, Shug AL, Visioli O, editors. Myocardial ischemia and lipid metabolism. New York: Plenum Publishing Corporation, 1984: 107–125.

    Chapter  Google Scholar 

  10. Corr PB, Gross RW, Sobel BE. Amphipathic metabolites and membrane dysfunction in ischemic myocardium. Circ Res 1984; 55: 135–154.

    Article  PubMed  CAS  Google Scholar 

  11. Van der Vusse GJ, Prinzen FW, Van Bilsen, Engels W, Reneman RS. Accumulation of lipids and lipid-intermediates in the heart during ischaemia. Basic Res Cardiol 1987; 82(Suppl 1): 157–167.

    PubMed  Google Scholar 

  12. Liedtke AJ. Lipid burden in ischemic myocardium. J Mol Cell Cardiol 1988; 20(Suppl II): 65–74.

    Article  PubMed  CAS  Google Scholar 

  13. Fritz IB, Arrigoni-Martelli E. Sites of action of carnitine and its derivatives on the cardiovascular system: interactions with membranes. Trends PharmacolSci 1993; 141: 355–360.

    Article  Google Scholar 

  14. Ten Eick RE, Whalley DW, Rasmussen HH. Connections: heart disease, cellular electrophysiology and ion channels. FASEB J 1992; 6: 2568–2580.

    Google Scholar 

  15. DaTorre SD, Creer MH, Pogwizd SM, Corr PB. Amphipathic lipid metabolites and their relation to arrhythmogenesis in the ischemic heart. J Mol Cell Cardiol 1991; 23(Suppl I): 11–22.

    Article  PubMed  CAS  Google Scholar 

  16. Wu J, Corr PB. Influence of long-chain acylcarnitines on voltage-dependent calcium current in adult ventricular myocytes. Am J Physiol 1992; 263: H410–H417.

    PubMed  CAS  Google Scholar 

  17. Yamada KA, McHowat J, Yan G-X, Donahue K, Peirick J, Kléber, Corr PB. Cellular uncoupling induced by accumulation of long-chain acylcarnitine during ischemia. Circ Res 1994; 74: 83–95.

    Article  PubMed  CAS  Google Scholar 

  18. Corr PB, Yamada KA, Da Torre SD. Modulation of α-adrenergic receptors and their intracellular coupling in the ischemic heart. Basic Res Cardiol 1990; 85(Suppl 1): 31–45.

    PubMed  Google Scholar 

  19. Morgan JP. Abnormal intracellular modulation of calcium as a major cause of cardiac contractile dysfunction. N Engl J Med 1991; 325: 625–631.

    Article  PubMed  CAS  Google Scholar 

  20. Stern MD, Lakatta EG. Excitation-contraction coupling in the heart: state of the question. FASEB J 1992; 6: 3092–3100.

    PubMed  CAS  Google Scholar 

  21. Carafoli E. The homeostasis of calcium in heart cells. J Mol Cell Cardiol 1985; 17: 203–212.

    Article  PubMed  CAS  Google Scholar 

  22. McMillin Wood J, Bush B, Pitts BJR, Schwartz A. Inhibition of bovine heart Na+, K+-ATPase by palmitylcarnitine and palmityl-CoA. Biochem Biophys Res Commun 1977; 74: 677–684.

    Article  Google Scholar 

  23. Lamers JMJ, Stinis JT, Montfoort A, Hülsmann WC. The effect of lipid intermediates on 2+and Na+ permeability and (Na+ + K+)-ATPase of cardiac sarcolemma. A possible role in myocardial ischemia. Biochim Biophys Acta 1984; 774: 127–137.

    Article  PubMed  CAS  Google Scholar 

  24. Adams RJ, Cohen DW, Gupte S, Johnson JD, Wallick ET, Wang T, Schwartz A. In vitro effects of palmitylcarnitine on cardiac plasma membrane Na, K-ATPase, and sarcoplasmic reticulum Ca2+-ATPase and 2+transport. J Biol Chem 1979; 254: 12404–12410.

    PubMed  CAS  Google Scholar 

  25. Pitts BJR, Tate CA, Van Winkle B, Wood JM, Entman ML. Palmitylcarnitine inhibition of the calcium pump in cardiac sarcoplasmic reticulum: a possible role in myocardial ischemia. Life Sci 1978; 23: 391–402.

    Article  PubMed  CAS  Google Scholar 

  26. Owens K, Kennett FF, Weglicki WB. Effects of fatty acid intermediates in Na+, K+-ATPase activity. Am J Physiol 1982; 242: H456–H461.

    PubMed  CAS  Google Scholar 

  27. Tanaka M, Gilbert J, Pappano AJ. Inhibition of sodium pump by L-palmitoylcarnitine in single guinea pig ventricular myocytes. J Mol Cell Cardiol 1992; 24: 711–720.

    Article  PubMed  CAS  Google Scholar 

  28. Inoue D, Pappano AJ. L-Palmitoylcarnitine and calcium ions act similarly on excitatory ionic currents in avian ventricular muscle. Circ Res 1983; 52: 625–634.

    Article  PubMed  CAS  Google Scholar 

  29. Meszaros J, Pappano AJ. Electrophysiological effects of L-palmitoylcarnitine in single ventricular myocytes. Am J Physiol 1990; 258: H931–H938.

    PubMed  CAS  Google Scholar 

  30. Patmore L, Duncan GP, Spedding M. Interaction of palmitoyl carnitine with calcium antagonists in myocytes. Br J Pharmacol 1989; 97: 443–450.

    Article  PubMed  CAS  Google Scholar 

  31. Philipson KD. “Calciductin” and the voltage-sensitive calcium uptake. J Mol Cell Cardiol 1983; 15: 867–869.

    Article  PubMed  CAS  Google Scholar 

  32. Lamers JMJ. Calcium transport systems in cardiac sarcolemma and their regulation by the second messengers cyclic AMP and calcium-calmodulin. Gen Physiol Biophys 1985; 4: 143–154.

    PubMed  CAS  Google Scholar 

  33. Post JA, Kenneth SJ, Langer GA. Effects of charged amphiphiles on cardiac cell contractility are mediated via effects on 2+current. Am J Physiol 1991; 260: H759–H769.

    PubMed  CAS  Google Scholar 

  34. Piper MH, Sezer O, Schwartz P, Hütter JF, Schweickhardt C, Spieckermann PG. Acylcarnitine effects on isolated cardiac mitochondria and erythrocytes. Basic Res Cardiol 1984; 79: 186–198.

    Article  PubMed  CAS  Google Scholar 

  35. Corr PB, Gross RW, Sobel BE. Arrhythmogenic amphiphilic lipids and the myocardial cell membrane. J Mol Cell Cardiol 1982; 14: 619–626.

    Article  PubMed  CAS  Google Scholar 

  36. Fink KL, Gross RW. Modulation of canine myocardial sarcolemmal membrane fluidity by amphiphilic compounds. Circ Res 1984; 55: 585–594.

    Article  PubMed  CAS  Google Scholar 

  37. Kobayashi A, Watanabe H, Fujisawa S, Yamamoto T, Yamazaki N. Effects of L-carnitine and palmitoylcarnitine on membrane fluidity of human erythrocytes. Biochim Biophys Acta 1989; 986: 83–88.

    Article  PubMed  CAS  Google Scholar 

  38. Meszaros J, Villanova L, Pappano AJ. Calcium ions and L-palmitoyl carnitine reduce erythrocyte electrophoretic mobility: test of a surface charge hypothesis. J Mol Cell Cardiol 1988; 20: 481–492.

    Article  PubMed  CAS  Google Scholar 

  39. Classen J, Deuticke B, Haest CWM. Nonmediated flip-flop of phospholipid analogues in the erythrocyte membrane as probed by palmitoylcarnitine: basic properties and influence of membrane modification. J Membr Biol 1989; 111: 169–178.

    Article  PubMed  CAS  Google Scholar 

  40. Lamers JMJ, De Jonge-Stinis JT, Verdouw PD, Hülsmann WC. On the possible role of long chain fatty acylcarnitine accumulation in producing functional and calcium permeability changes in membranes during myocardial ischaemia. Cardiovasc Res 1987; 21: 313–322.

    Article  PubMed  CAS  Google Scholar 

  41. Ichihara K, Neely JR. Recovery of ventricular function in reperfused ischemic rat hearts exposed to fatty acids. Am J Physiol 1985; 249: H492–H497.

    PubMed  CAS  Google Scholar 

  42. Liedtke AJ, De Maison L, Eggleston A, Cohen LM, Nellis SH. Changes in substrate metabolism and effects of excess fatty acids in reperfused myocardium. Circ Res 1988; 62: 535–542.

    Article  PubMed  CAS  Google Scholar 

  43. Reeves RC, Evanochko WT, Canby RC, McMillin JB, Pohost GM. Demonstration of increased myocardial lipid with post-ischemic dysfunction (“myocardial stunning”) by proton nuclear magnetic resonance spectroscopy. J Am Coll Cardiol 1989; 13: 739–744.

    Article  PubMed  CAS  Google Scholar 

  44. Pauly DF, Kirk KA, McMillin JB. Carnitine palmitoyltransferase in cardiac ischemia. A potential site for altered fatty acid metabolism. Circ Res 1991; 68: 1085–1094.

    Article  PubMed  CAS  Google Scholar 

  45. Van Bilsen M, Van der Vusse GJ, Willemsen PHM, Coumans WA, Reneman RS. Fatty acid accumulation during ischemia and reperfusion: Effects of pyruvate and POCA, a carnitine palmitoyltransferase I inhibitor. J Mol Cell Cardiol 1991; 23: 1437–1447.

    Article  PubMed  Google Scholar 

  46. Lopaschuk GD, Wall SR, Olley PM, Davies NJ. Etomoxir, a carnitine palmitoyltransferase I inhibitor, protects hearts from fatty acid-induced ischemic injury independent of changes in long chain acylcarnitine. Circ Res 1988; 63: 1036–1043.

    Article  PubMed  CAS  Google Scholar 

  47. Liedtke AJ, Nellis SH, Mjos OD. Effects of reducing fatty acid metabolism on mechanical function in regionally ischemic hearts. Am J Physiol 1984; 247: H387–H394.

    PubMed  CAS  Google Scholar 

  48. Liedtke AJ, Nellis SH, Neely JR. Effects of excess free fatty acids on mechanical and metabolic function in normal and ischemic myocardium in swine. Circ Res 1978; 43: 652–661.

    Article  PubMed  CAS  Google Scholar 

  49. Miller WP, Liedtke AJ, Nellis SH. Effects of 2-tetradecylglycidic acid on myocardial function in swine hearts. Am J Physiol 1986; 251: H547–H552.

    PubMed  CAS  Google Scholar 

  50. Paulson DJ, Noonan JJ, Ward KM, Stanley H, Sherratt A, Shug AL. Effects of POCA on metabolism and function in ischemic rat heart. Basis Res Cardiol 1986; 81: 180–187.

    Article  CAS  Google Scholar 

  51. Molaparast-Saless F, Liedtke AJ, Nellis SH. Effects of fatty acid blocking agents, oxfenicine and 4-bromocrotonic acid, on performance in aerobic and ischemic myocardium. J Mol Cell Cardiol 1987; 19: 509–520.

    Article  PubMed  CAS  Google Scholar 

  52. Seitelberger R, Kraupp O, Winkler M, Brugger G, Raberger G. Effect of the acylcarnitine-transferase blocking agent sodium 2[5-(4-chlorophenyl)pentyl]-oxirane-2-carboxylate (POCA) on metabolism and regional function in the underperfused myocardium. J Cardiovasc Pharmacol 1985; 7: 273–280.

    Article  PubMed  CAS  Google Scholar 

  53. McGarry JD, Foster DW. Studies with (+)-octanoylcarnitine in experimental diabetic ketoacidosis. Diabetes 1974; 23: 485–493.

    PubMed  CAS  Google Scholar 

  54. Hülsmann WC, Schneijdenberg CTWM, Verkleij AJ. Accumulation and excretion of long-chain acylcarnitine by rat hearts; studies with aminocarnitine. Biochim Biophys Acta 1991; 1097: 263–269.

    Article  PubMed  Google Scholar 

  55. Knabb MT, Ahumada CG, Sobel BE, Saffitz JE. A fixation procedure suitable for autoradiography of endogenous long-chain acyl carnitine. J Histochem Cytochem 1985; 33: 744–748.

    Article  PubMed  CAS  Google Scholar 

  56. Knabb MT, Saffit JE, Corr PB, Sobel BE. The dependence of electrophysiological derangements on accumulation of endogenous long-chain acyl carnitine in hypoxic neonatal rat myocytes. Circ Res 1986; 58: 230–240.

    Article  PubMed  CAS  Google Scholar 

  57. Heathers GP, Yamada KA, Kanter EM, Corr PB. Long-chain acylcarnitines mediate the hypoxia-induced increase in α1-adrenergic receptors on adult canine myocytes. Circ Res 1987; 61: 735–746.

    Article  PubMed  CAS  Google Scholar 

  58. McHowat J, Yamada KA, Saffitz JE, Corr PB. Subcellular distribution of endogenous long chain acylcarnitines during hypoxia in adult canine myocytes. Cardiovasc Res 1993; 27: 1237–1243.

    Article  PubMed  CAS  Google Scholar 

  59. Wu J, McHowat J, Saffitz JE, Yamada KA, Corr PB. Inhibition of gap junctional conductance by long-chain acylcarnitines and their preferential accumulation in junctional sarcolemma during hypoxia. Circ Res 1993; 72: 879–889.

    Article  PubMed  CAS  Google Scholar 

  60. Busselen P, Sercu D, Verdonck F. Exogenous palmitoyl carnitine and membrane damage in rat hearts. J Mol Cell Cardiol 1986; 20: 905–916.

    Article  Google Scholar 

  61. Hülsmann WC, Dubelaar M-L, Lamers JMJ, Maccari F. Protection by acyl-carnitines and phenylmethylsulfonyl fluoride of rat heart subjected to ischemia and reperfusion. Biochim Biophys Acta 1985; 847: 62–66.

    Article  PubMed  Google Scholar 

  62. Inoue N, Hirata K-I, Akita H, Yokoyama M. Palmitoyl-L-carnitine modifies the function of vascular endothelium. Cardiovasc Res 1994; 28: 129–134.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lamers, J.M.J. (1995). Amphiphilic interactions of long-chain fatty acylcarnitines with membranes: potential involvement in ischemic injury. In: De Jong, J.W., Ferrari, R. (eds) The Carnitine System. Developments in Cardiovascular Medicine, vol 162. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0275-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0275-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4122-5

  • Online ISBN: 978-94-011-0275-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics