Skip to main content

Carnitine acylcarnitine translocase in ischemia

  • Chapter
The Carnitine System

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 162))

  • 69 Accesses

Abstract

The role of fatty acid oxidation as a major source of energy to the contractile, working heart is well-established. However, the mechanism(s) by which the rates of long-chain fatty acid oxidation are controlled in the heart is (are) not as well understood as in the liver where the lipogenic substrate, malonyl-CoA, acts as a switch to partition fatty acids between synthesis and degradation [1]. Early studies in the working heart concluded that, at low levels of pressure development, rates of β-oxidation are limited by the disposal of acetyl-CoA through the citric acid cycle [2]. Recent evidence from the perfused, working rat heart [3] suggests that, similar to liver, the level of fatty acid oxidation directly reflects changes in activity of the tissue-specific acetyl-CoA carboxylase activity present in the cardiac myocyte. These results support the view that in the heart, the primary role for malonyl-CoA is the regulation of fatty acid flux through β-oxidation by inhibition of carnitine palmitoyltransferase I (CPT-I) on the outer mitochondrial membrane [4]. This situation may vary, however, depending upon the work load to the heart. When levels of cardiac work are increased, increases in fatty acylcarnitine and decreases in fatty acyl-CoA are observed concomittent with an acceleration of β-oxidation [2]. Since the long-chain acylcarnitine produced by CPT-I must be transported across the mitochondrial membrane to CPT-II in exchange for one molecule of carnitine from the matrix, these authors suggested that the increase in acylcarnitine accumulation observed at high work loads reflects a limitation in the carnitine-dependent pathway at the carnitine acylcarnitine translocase (CAT). The speculation that CAT may exert rate-limitation on fatty acylcarnitine oxidation under certain conditions has drawn support from observations that diabetic ketosis [5], and substrate-dependent activation [6] can up-regulate the rate of acylcarnitine translocation in liver and heart mitochondria, respectively. In the majority of these studies, it is likely that the expression of CAT activity is greatly influenced by variations in the matrix content of carnitine, the latter present at concentrations which are subsaturating under normal transport conditions [5, 7]. A decrement in matrix carnitine with aging [8,9] has been proposed to account for the decreased rates of CAT activity and palmitoylcarnitine oxidation in heart mitochondria from 24–30 month-old rats (Table 1). A related inability of palmitate to depress glucose extraction in the perfused working old rat heart suggests a direct physiological consequence of diminished acylcarnitine exchange on cardiac energy metabolism in aging [9]. The physiological importance of CAT has been further emphasized in clinical cases of genetic deficiencies reported in the translocase (see below). The functional ramifications of decreased or limiting CAT activity will be discussed below in relation to cardiac-specific effects.

“The expression of a limitation in carnitine acylcarnitine translocase activity relevant to human ischemic heart disease may be found only in those myocardial cells which are severely compromised and thus, may only be part of the end-stage sequellae of injury and cell death.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McGarry JD, Woeltje KF, Kuwajima M, Foster DW. Regulation of ketogenesis and the renaissance of carnitine palmitoyltransferase. Diabetes/Metab Rev 1989; 5: 271–284.

    Article  CAS  Google Scholar 

  2. Oram JF, Bennetch SL, Neely JR. Regulation of fatty acid utilization in isolated perfused rat hearts. J Biol Chem 1973; 248: 5299–5309.

    PubMed  CAS  Google Scholar 

  3. Saddik M, Gamble J, Witters LA, Lopaschuk GD. Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. J Biol Chem 1993; 268: 25836–25845.

    PubMed  CAS  Google Scholar 

  4. Murthy MSR, Pande SV. Characterization of a solubilized malonyl-CoA-sensitive carnitine palmitoyltransferase from the mitochondrial outer membrane as a protein distinct from the malonyl-CoA-insensitive carnitine palmitoyltransferase of the inner membrane. Biochem J 1990; 268: 599–604.

    PubMed  CAS  Google Scholar 

  5. Parvin R, Pande SV. Enhancement of mitochondrial carnitine and carnitine acylcarnitine translocase-mediated transport of fatty acids into liver mitochondria under ketogenic conditions. J Biol Chem 1979; 254: 5423–5429.

    PubMed  CAS  Google Scholar 

  6. Wolkowicz PE, Pauly DF, Van Winkle WB, McMillin JB. Chymotrypsin activates cardiac mitochondrial carnitine-acylcarnitine translocase. Biochem J 1989; 261: 363–370.

    PubMed  CAS  Google Scholar 

  7. Idell-Wenger JA. Carnitine: acylcarnitine translocase of rat heart mitochondria. J Biol Chem 1981; 256: 5597–5603.

    PubMed  CAS  Google Scholar 

  8. Hansford RG. Lipid oxidation by heart mitochondria from young adult and senescent rats. Biochem J 1978; 170: 285–295.

    PubMed  CAS  Google Scholar 

  9. McMillin JB, Taffet GE, Taegtmeyer H, Hudson EK, Tate CA. Mitochondrial metabolism and substrate competition in the aging Fischer rat heart. Cardiovasc Res 1993; 27: 2222–2228.

    Article  PubMed  CAS  Google Scholar 

  10. Opie LH, Owen P, Riemersma RA. Relative rates of oxidation of glucose and free fatty acids by ischaemic and non-ischaemic myocardium after coronary artery ligation in the dog. Eur J Clin Invest 1973; 3: 419–435.

    Article  PubMed  CAS  Google Scholar 

  11. Rovetto MJ, Lamberton WF, Neely JR. Mechanisms of glycolytic inhibition in ischemic rat hearts. Circ Res 1975; 37: 742–751.

    Article  PubMed  CAS  Google Scholar 

  12. Lopaschuk GD, Spafford MA, Davies NJ, Wall SR. Glucose and palmitate oxidation in isolated working rat hearts reperfused after a period of transient global ischemia. Circ Res 1990; 66: 546–553.

    Article  PubMed  CAS  Google Scholar 

  13. Liedtke AJ, Nellis SH, Neely JR, Hughes HC. Effects of treatment with pyruvate and tromethamine in experimental myocardial ischemia. Circ Res 1976; 39: 378–387.

    Article  PubMed  CAS  Google Scholar 

  14. Oliver MF. Metabolic response during impending myocardial infarction. II. Clinical implications. Circulation 1972; 45: 491–500.

    Article  PubMed  CAS  Google Scholar 

  15. Idell-Wenger JA, Grotyohann LW, Neely JR. Coenzyme A and carnitine distribution in normal and ischemic hearts. J Biol Chem 1978; 253: 4310–4318.

    PubMed  CAS  Google Scholar 

  16. Wood (McMillin) J, Bush B, Pitts BJR, Schwartz A. Inhibition of bovine Na+, K+-ATPase by palmitylcarnitine and palmityl-CoA. Biochem Biophys Res Commun 1977; 74: 677–684.

    Article  Google Scholar 

  17. Pitts BJR, Tate CA, Van Winkle WB, Wood (McMillin) J, Entman ML. Palmitylcarnitine inhibition of the calcium pump in cardiac sarcoplasmic reticulum: A possible role in myocardial ischemia. Life Sci 1978; 23: 391–402.

    Article  PubMed  CAS  Google Scholar 

  18. Stanley Jr AW, Moraski RE, Russell Jr RO et al. Effects of glucose-insulin-potassium on myocardial substrate availability and utilization in stable coronary artery disease. Am J Cardiol 1975; 36: 929–937.

    Article  PubMed  Google Scholar 

  19. Van Der Vusse GJ, Glatz JFC, Stam HCG, Reneman RS. Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev 1992; 72: 881–940.

    PubMed  Google Scholar 

  20. Schulz H, Racker E. Carnitine transport in submitochondrial particles and reconstituted proteoliposomes. Biochem Biophys Res Commun 1979; 89: 134–140.

    Article  PubMed  CAS  Google Scholar 

  21. Pande SV, Parvin R. Carnitine-acylcarnitine translocase catalyzes an equilibrating undirectional transport as well. J Biol Chem 1980; 255: 2994–3001.

    PubMed  CAS  Google Scholar 

  22. Abu-Erreish GM, Neely JR, Whitmer JT, Whitman V, Sanadi DR. Fatty acid oxidation by isolated perfused working hearts of aged rats. Am J Physiol 1977; 232: E258–E262.

    PubMed  CAS  Google Scholar 

  23. Hansford R, Castro F. Age-linked changes in the activity of enzymes of the tricarboxylic acid cycle and lipid oxidation, and of carnitine content, in muscles of the rat. Mech Aging Dev 1982; 19: 191–201.

    Article  PubMed  CAS  Google Scholar 

  24. Idell-Wenger JA, Neely JR. Regulation of uptake and metabolism of fatty acids by muscle. In: Dietschy JM, Gotto AM, Ontko JA, editors. Disturbances in lipid and lipoprotein metabolism. Bethesda: Am Physiol Soc, 1978: 2669–2684.

    Google Scholar 

  25. Schwaiger M, Schelbert HR, Keen R et al. Retention and clearance of C-11 palmitic acid in ischemic and reperfused canine myocardium. J Am Coll Cardiol 1985; 6: 311–320.

    Article  PubMed  CAS  Google Scholar 

  26. Teoh KH, Mickle DAG, Weisel RD et al. Decreased postoperative myocardial fatty acid oxidation. J Surg Res 1988; 44: 36–44.

    Article  PubMed  CAS  Google Scholar 

  27. Renstrom B, Nellis SH, Liedke AJ. Metabolic oxidation of glucose during early myocardial reperfusion. Circ Res 1989; 65: 1094–1101.

    Article  PubMed  CAS  Google Scholar 

  28. Saddik M, Lopaschuk GD. Myocardial triglyceride turnover during reperfusion of isolated rat hearts subjected to a transient period of global ischemia. J Biol Chem 1992; 267: 3825–3831.

    PubMed  CAS  Google Scholar 

  29. Liedtke AJ, DeMaison L, Eggleston AM, Cohen LM, Nellis SH. Changes in substrate metabolism and effects of excess fatty acids in reperfused myocardium. Circ Res 1988; 62: 535–542.

    Article  PubMed  CAS  Google Scholar 

  30. Paulson DJ, Crass III MF. Endogenous triacylglycerol metabolism in diabetic heart. Am J Physiol 1982; 242: H1084–H1094.

    PubMed  CAS  Google Scholar 

  31. Idell-Wenger JA, Grotyohann LW, Neely JR. Regulation of fatty acid utilization in heart. Role of the carnitine-acetyl-CoA transferase and carnitine-acetyl carnitine translocase system. J Mol Cell Cardiol 1982; 14: 413–417.

    CAS  Google Scholar 

  32. Liedtke AJ, Nellis SH, Mjøs OD. Effects of reducing fatty acid metabolism on mechanical function in regionally ischemic hearts. Am J Physiol 1984; 247: H387–H394.

    PubMed  CAS  Google Scholar 

  33. Knabb MT, Saffitz JE, Corr PB, Sobel BE. The dependence of electrophysiological derangements on accumulation of endogenous long-chain acyl carnitine in hypoxic neonatal myocytes. Circ Res 1986; 58: 230–240.

    Article  PubMed  CAS  Google Scholar 

  34. DaTorre SD, Creer MH, Pogwizd SM, Corr PB. Amphipathic lipid metabolites and their relation to arrhythmogenesis in the ischemic heart. J Mol Cell Cardiol 1991; 23(Suppl 1): 11–22.

    Article  PubMed  CAS  Google Scholar 

  35. Adams RJ, Cohen DW, Gupta S et al. In vitro effects of palmitylcarnitine on cardiac plasma membrane Na, K-ATPase, and sarcoplasmic reticulum Ca2+-ATPase and 2+transport. J Biol Chem 1979; 254: 12404–12410.

    PubMed  CAS  Google Scholar 

  36. Shen AC, Jennings RB. Kinetics of calcium accumulation in acute myocardial cell injury. Am J Path 1972; 67: 441–452.

    PubMed  CAS  Google Scholar 

  37. Morris AC, Hagler HK, Willerson JT, Buja LM. Relationship between calcium loading and impaired energy metabolism during Na+, K+ pump inhibition and metabolic inhibition in cultured neonatal rat cardiac myocytes. J Clin Invest 1989; 83: 1876–1887.

    Article  PubMed  CAS  Google Scholar 

  38. Corr PB, Snyder DW, Cain ME, Crafford Jr WA, Gross RW, Sobel BE. Electrophysiological effects of amphiphiles on canine Purkinje fibers: Implications for dysrhythmia secondary to ischemia. Circ Res 1981; 49: 354–363.

    Article  PubMed  CAS  Google Scholar 

  39. Meszaros J, Pappano AJ. Electrophysiological effects of L-palmitoylcarnitine in single ventricular myocytes. Am J Physiol 1990; 258: H931–H938.

    PubMed  CAS  Google Scholar 

  40. Inoue D, Pappano AJ. L-Palmitylcarnitine and calcium ions act similarly on excitatory ionic currents in avian ventricular muscle. Circ Res 1983; 52: 625–634.

    Article  PubMed  CAS  Google Scholar 

  41. Katz AM, Messineo FC. Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circ Res 1981; 48: 1–16.

    Article  PubMed  CAS  Google Scholar 

  42. Lopaschuk GD, Wall SR, Olley PM, Davies NJ. Etomoxir, a carnitine paimitoyltransferase I inhibitor, protects hearts from fatty acid-induced ischemic injury independent of changes in long chain acylcarnitine. Circ Res 1988; 63: 1036–1043.

    Article  PubMed  CAS  Google Scholar 

  43. Ichihara K, Neely JR. Recovery of ventricular function in reperfused ischemic rat hearts exposed to fatty acids. Am J Physiol 1985; 249: H492–H497.

    PubMed  CAS  Google Scholar 

  44. Hutter JF, Alves C, Soboll S. Effects of hypoxia and fatty acids on the distribution of metabolites in rat heart. Biochim Biophys Acta 1990; 1016: 244–252.

    Article  PubMed  CAS  Google Scholar 

  45. De Maugre F, Bonnefont JP, Colonna M, Cepanec C, Leroux J-P, Saudubray J-M. Infantile form of carnitine paimitoyltransferase II deficiency with hepatomuscular symptoms and sudden death. Physiopathological approach to carnitine paimitoyltransferase II deficiencies. J Clin Invest 1991; 87: 859–864.

    Article  Google Scholar 

  46. Murthy MSR, Kamanna VS, Pande SV. A carnitine/acylcarnitine translocase assay applicable to biopsied muscle specimens without requiring mitochondrial isolation. Biochem J 1986; 236: 143–148.

    PubMed  CAS  Google Scholar 

  47. Stanley CA, Hale DE, Berry GT, Deleeuw S, Boxer J, Bonnefont J-P. Brief report: A deficiency of carnitine-acylcarnitine translocase in the inner mitochondrial membrane. N Engl J Med 1992; 327: 19–23.

    Article  PubMed  CAS  Google Scholar 

  48. Pande SV, Brivet M, Slama A, De Maugre F, Aufrant C, Saudubray J-M. Carnitine-acylcarnitine translocase deficiency with severe hypoglycemia and auriculo ventricular block. Translocase assay in permeabilized fibroblasts. J Clin Invest 1993; 91: 1247–1252.

    CAS  Google Scholar 

  49. Haworth JC, De Maugre F, Booth FA et al. Atypical features of the hepatic form of carnitine paimitoyltransferase deficiency in a Hutterite family. J Pediatr 1992; 121: 553–557.

    Article  PubMed  CAS  Google Scholar 

  50. Vianey-Saban C, Mousson B, Bertrand C et al. Carnitine palmitoyl transferase I deficiency presenting as a Reye-like syndrome without hypoglycemia. Eur J Pediatr 1993; 152: 334–338.

    Article  PubMed  CAS  Google Scholar 

  51. Wood (McMillin) J, Hanley H, Entman ML et al. Biochemical and morphologic correlates of acute experimental myocardial ischemia. III. Energy producing mechanisms during very early ischemia. Circ Res 1979; 44: 52–61.

    Article  Google Scholar 

  52. Yoon SB, McMillin-Wood JB, Michael LH, Lewis RM, Entman ML. Protection of canine cardiac mitochondrial function by verapamil-cardioplegia during ischemic arrest. Circ Res 1985; 56: 704–708.

    Article  PubMed  CAS  Google Scholar 

  53. Schwartz A, (McMillin) Wood J, Allen JC et al. Biochemical and morphologic correlates of cardiac ischemia. I. Membrane systems. Am J Cardiol 1973; 32: 46–61.

    Article  PubMed  CAS  Google Scholar 

  54. Pauly DF, Kirk KA, McMillin JB. Carnitine paimitoyltransferase in cardiac ischemia: A potential site for altered fatty acid metabolism. Circ Res 1991; 68: 1085–1094.

    Article  PubMed  CAS  Google Scholar 

  55. Pande SV, Parvin R. Characterization of carnitine acylcarnitine translocase system of heart mitochondria. J Biol Chem 1976; 251: 6683–6691.

    PubMed  CAS  Google Scholar 

  56. Ziegler DM. Role of reversible oxidation-reduction of enzyme thiols-disulfides in metabolic regulation. Annu Rev Biochem 1985; 54: 305–329.

    Article  PubMed  CAS  Google Scholar 

  57. Myers ML, Bolli R, Lekich RF, Hartley CS, Roberts R. Enhancement of recovery of myocardial function by oxygen free-radical scavengers after reversible regional ischemia. Circulation 1985; 72: 915–921.

    Article  PubMed  CAS  Google Scholar 

  58. Curello S, Ceconi C, Bigoli C, Ferrari R, Albertino R, Guarnieri C. Changes in the cardiac glutathione status after ischemia and reperfusion. Experientia 1985; 41: 42–43.

    Article  PubMed  CAS  Google Scholar 

  59. Janssen M, Koster JF, Bos E, De Jong JW. Malondialdehyde and glutathione production in isolated perfused human and rat hearts. Circ Res 1993; 73: 681–688.

    Article  PubMed  CAS  Google Scholar 

  60. Pauly DF, Yoon SB, McMillin JB. Carnitine-acylcarnitine translocase in ischemia: Evidence for sulfhydryl group modification. Am J Physiol 1987; 253: H1557–H1565.

    PubMed  CAS  Google Scholar 

  61. Noel H, Pande SV. An essential requirement of cardiolipin for mitochondrial carnitine acylcarnitine translocase activity. Eur J Biochem 1986; 155: 99–102.

    Article  PubMed  CAS  Google Scholar 

  62. Beatrice MC, Stiers DL, Pfeiffer DR. Increased permeability of mitochondria during 2+release induced by t-butylhydroperoxide or oxaloacetate. The effect of ruthenium red. J Biol Chem 1982; 257: 7161–7171.

    PubMed  CAS  Google Scholar 

  63. McMillin JB, Bick RJ, Benedict CR. Influence of dietary fish oil on mitochondrial function and response to ischemia. Am J Physiol 1992; 263: H1479–H1485.

    PubMed  CAS  Google Scholar 

  64. Kobayashi A, Masumura Y, Yamazaki N. L-Carnitine treatment for congestive heart failure — experimental and clinical study. Jpn Circ J 1992; 56: 86–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mcmillin, J.B. (1995). Carnitine acylcarnitine translocase in ischemia. In: De Jong, J.W., Ferrari, R. (eds) The Carnitine System. Developments in Cardiovascular Medicine, vol 162. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0275-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0275-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4122-5

  • Online ISBN: 978-94-011-0275-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics